318 research outputs found

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols

    PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data.

    Get PDF
    Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinde

    Differential metabolism of Mycoplasma species as revealed by their genomes

    Get PDF
    The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall), has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms

    Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish

    Get PDF
    Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.European Union KBBE.2013.1.2-10 European Community 311920 Fondazione Cassa di Risparmio Padova e Rovigo FCT - Foundation for Science and Technology research grant SPARCOMP under the Call ARISTEIA I of the National Strategic Reference Framework - by the EU 36 Hellenic Republic through the European Social Fundinfo:eu-repo/semantics/publishedVersio

    Gene probing reveals the widespread distribution, diversity and abundance of isoprene-degrading bacteria in the environment

    Get PDF
    Background: Approximately 500 Tg of isoprene are emitted to the atmosphere annually, an amount similar to that of methane, and despite its significant effects on the climate, very little is known about the biological degradation of isoprene in the environment. Isolation and characterisation of isoprene degraders at the molecular level has allowed the development of probes targeting isoA encoding the α-subunit of the isoprene monooxygenase. This enzyme belongs to the soluble diiron centre monooxygenase family and catalyses the first step in the isoprene degradation pathway. The use of probes targeting key metabolic genes is a successful approach in molecular ecology to study specific groups of bacteria in complex environments. Here, we developed and tested a novel isoA PCR primer set to study the distribution, abundance, and diversity of isoprene degraders in a wide range of environments. Results: The new isoA probes specifically amplified isoA genes from taxonomically diverse isoprene-degrading bacteria including members of the genera Rhodococcus, Variovorax, and Sphingopyxis. There was no cross-reactivity with genes encoding related oxygenases from non-isoprene degraders. Sequencing of isoA amplicons from DNA extracted from environmental samples enriched with isoprene revealed that most environments tested harboured a considerable variety of isoA sequences, with poplar leaf enrichments containing more phylogenetically diverse isoA genes. Quantification by qPCR using these isoA probes revealed that isoprene degraders are widespread in the phyllosphere, terrestrial, freshwater and marine environments. Specifically, soils in the vicinity of high isoprene-emitting trees contained the highest number of isoprene-degrading bacteria. Conclusion: This study provides the molecular ecology tools to broaden our knowledge of the distribution, abundance and diversity of isoprene degraders in the environment, which is a fundamental step necessary to assess the impact that microbes have in mitigating the effects of this important climate-active gas

    Phylogenetically and spatially close marine sponges harbour divergent bacterial communities

    Get PDF
    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These findings suggest a pivotal host-driven effect on the shape of the marine sponge microbiome, bearing implications to our current understanding of the distribution of microbial genetic resources in the marine realm.This work was financed by the Portuguese Foundation for Science and Technology (FCT - http://www.fct.pt) through the research project PTDC/MAR/101431/2008. CCPH has a PhD fellowship granted by FCT (Grant No. SFRH/BD/60873/2009). JRX’s research is funded by a FCT postdoctoral fellowship (grant no. SFRH/BPD/62946/2009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore