27 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Mind Perception: Real but Not Artificial Faces Sustain Neural Activity beyond the N170/VPP

    Get PDF
    Faces are visual objects that hold special significance as the icons of other minds. Previous researchers using event-related potentials (ERPs) have found that faces are uniquely associated with an increased N170/vertex positive potential (VPP) and a more sustained frontal positivity. Here, we examined the processing of faces as objects vs. faces as cues to minds by contrasting images of faces possessing minds (human faces), faces lacking minds (doll faces), and non-face objects (i.e., clocks). Although both doll and human faces were associated with an increased N170/VPP from 175–200 ms following stimulus onset, only human faces were associated with a sustained positivity beyond 400 ms. Our data suggest that the N170/VPP reflects the object-based processing of faces, whether of dolls or humans; on the other hand, the later positivity appears to uniquely index the processing of human faces—which are more salient and convey information about identity and the presence of other minds

    Ariel: Enabling planetary science across light-years

    Get PDF

    An Overview of the Potential Environmental Impacts of Large Scale Microalgae Cultivation

    Get PDF
    Cultivation of microalgae for applications such as fuel, food, pharmaceuticals and farming is a rapidly developing area of research and investment. Whilst microalgae promises to deliver many environmental benefits compared with existing biofuel technology, there are also issues to overcome in relation to wastewater management, emissions control, land use change and responsible development of genetically modified organisms. This review seeks to highlight both the positive and negative impacts of microalgae cultivation, focusing on impacts to the aquatic, atmospheric and terrestrial biospheres that may occur and would need to be managed should the microalgae cultivation industry continue to grow

    Organization and function of the plant pleiotropic drug resistance ABC transporter family

    No full text
    Among the ABC transporters, the pleiotropic drug resistance (PDR) family is particular in that its members are found only in fungi and plants and have a reverse domain organization, i.e., the nucleotide binding domain precedes the transmembrane domain. In Arabidopsis and rice, for which the full genome has been sequenced, the family of plant ABC transporters contains 15 and 23 PDR genes, respectively, which can be tentatively organized using the sequence data into five subfamilies. Most of the plant PDR genes so far characterized belong to subfamily I and have been shown to be involved in responses to abiotic and biotic stress, in the latter case, probably by transporting antimicrobial secondary metabolites to the cell surface. Only a single subfamily II member has been characterized. Induction of its expression by iron deficiency suggests its involvement in iron deficiency stress, thus, enlightening a new physiological role for a PDR gene. (c) 2005 Federation of European Biochemical Societies. Published by Else-tier B.V. All rights reserved
    corecore