105 research outputs found

    Analysis of paternal lineages in Brazilian and African populations

    Get PDF
    The present-day Brazilian population is a consequence of the admixture of various peoples of very different origins, namely, Amerindians, Europeans and Africans. The proportion of each genetic contribution is known to be very heterogeneous throughout the country. The aim of the present study was to compare the male lineages present in two distinct Brazilian populations, as well as to evaluate the African contribution to their male genetic substrate. Thus, two Brazilian population samples from Manaus (State of Amazon) and Ribeirão Preto (State of São Paulo) and three African samples from Guinea Bissau, Angola and Mozambique were typed for a set of nine Y chromosome specific STRs. The data were compared with those from African, Amerindian and European populations. By using Y-STR haplotype information, low genetic distances were found between the Manaus and Ribeirão Preto populations, as well as between these and others from Iberia. Likewise, no significant distances were observed between any of the African samples from Angola, Mozambique and Guinea Bissau. Highly significant Rst values were found between both Brazilian samples and all the African and Amerindian populations. The absence of a significant Sub-Saharan African male component resulting from the slave trade, and the low frequency in Amerindian ancestry Y-lineages in the Manaus and Ribeirão Preto population samples are in accordance with the accentuated gender asymmetry in admixture processes that has been systematically reported in colonial South American populations

    Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test

    Full text link
    [EN] Phytophthora species are the main agents associated with oak (Quercus spp.) decline, together with the changing environmental conditions and the intensive land use. The aim of this study was to evaluate the susceptibility of Quercus ilex to the inoculation with eight Phytophthora species. Seven to eight month old Q. ilex seedlings grown from acorns, obtained from two Spanish origins, were inoculated with P. cinnamomi, P. cryptogea, P. gonapodyides, P. megasperma, P. nicotianae, P. plurivora, P. psychrophila and P. quercina. All Phytophthora inoculated seedlings showed decline and symptoms including small dark necrotic root lesions, root cankers, and loss of fine roots and tap root. The most aggressive species were P. cinnamomi, P. cryptogea, P. gonapodyides, P. plurivora and P. psychrophila followed by P. megasperma., while Phytophthora quercina and P. nicotianae were the less aggressive species. Results obtained confirm that these Phytophthora species could constituted a threat to Q. ilex ecosystems and the implications are further discussed.The authors are grateful to A. Solla and his team from the Centro Universitario de Plasencia-Universidad de Extremadura (Spain) for helping in the acorns collection and to the CIEF (Centro para la Investigación y Experimentación Forestal, Generalitat Valenciana, Valencia, Spain) for providing the acorns. This research was supported by funding from the project AGL2011- 30438-C02-01 (Ministerio de Economía y Competitividad, Spain).Mora-Sala, B.; Abad Campos, P.; Berbegal Martinez, M. (2018). Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-018-01650-6SÁlvarez, L. A., Pérez-Sierra, A., Armengol, J., & García-Jiménez, J. (2007). Characterization of Phytophthora nicotianae isolates causing collar and root rot of lavender and rosemary in Spain. Journal of Plant Pathology, 89, 261–264.Balci, Y., & Halmschlager, E. (2003a). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33, 157–174.Balci, Y., & Halmschlager, E. (2003b). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52, 694–702.Brasier, C. M. (1992a). Oak tree mortality in Iberia. Nature, 360, 539.Brasier, C. M. ((1992b)). Phytophthora cinnamomi as a contributory factor on European oak declines. In N. by Luisi, P. Lerario, & A. B. Vannini (Eds.), Recent Advances in Studies on Oak Decline. Proc. Int. Congress, Brindisi, Italy, September 13-18, 1992 (pp. 49–58). Italy: Università degli Studi.Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestieres, 53, 347–358.Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.Brasier, C. M., Hamm, P. B., & Hansen, E. M. (1993a). Cultural characters, protein patterns and unusual mating behaviour of P. gonapodyides isolates from Britain and North America. Mycological Research, 97, 1287–1298.Brasier, C. M., Robredo, F., & Ferraz, J. F. P. (1993b). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–145.Camilo-Alves, C. S. P., Clara, M. I. E., & Ribeiro, N. M. C. A. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132, 411–432.Català, S., Berbegal, M., Pérez-Sierra, A., & Abad-Campos, P. (2017). Metabarcoding and development of new real-time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain. Plant Pathology, 66, 115–123.Collett, D. (2003). Modelling survival data in medical research (2nd ed.). Boca Raton: Chapman & Hall/CRC, 410 pp.Corcobado, T., Cubera, E., Pérez-Sierra, A., Jung, T., & Solla, A. (2010). First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Disease Reports, 22, 33.Corcobado, T., Cubera, E., Moreno, G., & Solla, A. (2013). Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phytophthora cinnamomi. Agricultural and Forest Meteorology, 169, 92–99.Corcobado, T., Vivas, M., Moreno, G., & Solla, A. (2014). Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. Forest Ecology and Management, 324, 72–80.Corcobado, T., Miranda-Torres, J. J., Martín-García, J., Jung, T., & Solla, A. (2017). Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathology, 66, 792–804.Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul, Minnesota,USA: APS Press, American Phytopathological. Society 562pp.Gallego, F. J., Perez de Algaba, A., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. European Journal of Forest Pathology, 29, 17–27.Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. Annals of Forest Science, 56, 539–547.Hardham, A. R., & Blackman, L. M. (2010). Molecular cytology of Phytophthora plant interactions. Australasian Plant Pathology, 39, 29.Hernández-Lambraño, R. E., González-Moreno, P., & Sánchez-Agudo, J. Á. (2018). Environmental factors associated with the spatial distribution of invasive plant pathogens in the Iberian Peninsula: The case of Phytophthora cinnamomi Rands. Forest Ecology and Management, 419, 101–109.Jankowiak, R., Stępniewska, H., Bilański, P., & Kolařík, M. (2014). Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica, 59, 531–542.Jeffers, S. N., & Aldwinckle, H. S. (1987). Enhancing detection of Phytophthora cactorum in naturally infested soil. Phytopathology, 77, 1475–1482.Jiménez, A. J., Sánchez, E. J., Romero, M. A., Belbahri, L., Trapero, A., Lefort, F., & Sánchez, M. E. (2008). Pathogenicity of Pythium spiculum and P. sterilum on feeder roots of Quercus rotundifolia. Plant Pathology, 57, 369.Jönsson, U. (2006). A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytologist, 171, 55–68.Jönsson, U., Jung, T., Rosengren, U., Nihlgard, B., & Sonesson, K. (2003). Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soils. New Phytologist, 158, 355–364.Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia, 22, 95–110.Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. European Journal of Forest Pathology, 26, 253–272.Jung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103, 785–798.Jung, T., Blaschke, H., & Oßwald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49, 706–718.Jung, T., Hansen, E. M., Winton, L., Oßwald, W., & Delatour, C. (2002). Three new species of Phytophthora from European oak forests. Mycological Research, 106, 397–411.Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal, O., Bakonyi, J., Cacciola, S. O., Cech, T., Chavarriaga, D., Corcobado, T., Cravador, A., Decourcelle, T., Denton, G., Diamandis, S., Dogmus-Lehtijärvi, H. T., Franceschini, A., Ginetti, B., Glavendekic, M., Hantula, J., Hartmann, G., Herrero, M., Ivic, D., Horta Jung, M., Lilja, A., Keca, N., Kramarets, V., Lyubenova, A., Machado, H., Magnano di San Lio, G., Mansilla Vázquez, P. J., Marçais, B., Matsiakh, I., Milenkovic, I., Moricca, S., Nagy, Z. Á., Nechwatal, J., Olsson, C., Oszako, T., Pane, A., Paplomatas, E. J., Pintos Varela, C., Prospero, S., Rial Martínez, C., Rigling, D., Robin, C., Rytkönen, A., Sánchez, M. E., Scanu, B., Schlenzig, A., Schumacher, J., Slavov, S., Solla, A., Sousa, E., Stenlid, J., Talgø, V., Tomic, Z., Tsopelas, P., Vannini, A., Vettraino, A. M., Wenneker, M., Woodward, S., & Peréz-Sierra, A. (2016). Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46, 134–163.Kroon, L. P., Brouwer, H., de Cock, A. W., & Govers, F. (2012). The genus Phytophthora anno 2012. Phytopathology, 102, 348–364.Linaldeddu, B. T., Scanu, B., Maddau, L., & Franceschini, A. (2014). Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology, 44, 191–200.Luque, J., Parladé, J., & Pera, J. (2000). Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). Forest Pathology, 30, 247–263.Luque, J., Parladé, J., & Pera, J. (2002). Seasonal changes in susceptibility of Quercus suber to Botryosphaeria stevensii and Phytophthora cinnamomi. Plant Pathology, 51, 338–345.MAGRAMA. (2014). Diagnóstico del Sector Forestal Español. Análisis y Prospectiva - Serie Agrinfo/Medioambiente n° 8. Ed. Ministerio de Agricultura, Alimentación y Medio Ambiente. In NIPO: 280-14-081-9.Martín-García, J., Solla, A., Corcobado, T., Siasou, E., & Woodward, S. (2015). Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. Forest Pathology, 45, 215–223.Maurel, M., Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Effects of root damage associated with Phytophthora cinnamomi on water elations, biomass accumulation, mineral nutrition and vulnerability to water deficit of five oak and chestnut species. Forest Pathology, 31, 353–369.McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.Moralejo, E., Pérez-Sierra, A., Álvarez, L. A., Belbahri, L., Lefort, F., & Descals, E. (2009). Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathology, 58, 100–110.Mora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The use of qPCR reveals a high frequency of Phytophthora quercina in two Spanish holm oak areas. Forests, 9(11):697. https://doi.org/10.3390/f9110697 .Moreira, A. C., & Martins, J. M. S. (2005). Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. Forest Pathology, 35, 145–162.Mrázková, M., Černý, K., Tomosovsky, M., Strnadová, V., Gregorová, B., Holub, V., Panek, M., Havrdová, L., & Hejná, M. (2013). Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Protection Science, 49, 155–164.Navarro, R. M., Gallo, L., Sánchez, M. E., Fernández, P., & Trapero, A. (2004). Efecto de distintas fertilizaciones de fósforo en la resistencia de brinzales de encina y alcornoque a Phytophthora cinnamomi Rands. Investigación Agraria. Sistemas y Recursos Forestales, 13, 550–558.Panabières, F., Ali, G., Allagui, M., Dalio, R., Gudmestad, N., Kuhn, M., Guha Roy, S., Schena, L., & Zampounis, A. (2016). Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 55, 20–40.Pérez-Sierra, A., & Jung, T. (2013). Phytophthora in woody ornamental nurseries. In: Phytophthora: A global perspective (pp. 166-177). Ed. by Lamour, K. Wallingford: CABI.Pérez-Sierra, A., Mora-Sala, B., León, M., García-Jiménez, J., & Abad-Campos, P. (2012). Enfermedades causadas por Phytophthora en viveros de plantas ornamentales. Boletín de Sanidad Vegetal-Plagas, 38, 143–156.Pérez-Sierra, A., López-García, C., León, M., García-Jiménez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperature Phytophthora species associated with Quercus decline in a Mediterranean forest in eastern Spain. Forest Pathology, 43, 331–339.Redondo, M. A., Pérez-Sierra, A., & Abad-Campos, P. (2015). Histology of Quercus ilex roots during infection by Phytophthora cinnamomi. Trees - Structure and Function, 29, 1943–5197.Ríos, P., Obregón, S., de Haro, A., Fernández-Rebollo, P., Serrano, M. S., & Sánchez, M. E. (2016). Effect of Brassica Biofumigant Amendments on Different Stages of the Life Cycle of Phytophthora cinnamomi. Journal of Phytopathology, 164, 582–594.Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86, 205–214.Robin, C., Desprez-Loustau, M. L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales Des Sciences Forestieres, 55, 869–883.Robin, C., Capron, G., & Desprez-Loustau, M. L. (2001). Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathology, 50, 708–716.Rodríguez-Molina, M. C., Torres-Vila, L. M., Blanco-Santos, A., Núñez, E. J. P., & Torres-Álvarez, E. (2002). Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. Forest Pathology, 32, 365–372.Romero, M. A., Sánchez, J. E., Jiménez, J. J., Belbahri, L., Trapero, A., Lefort, F., & Sánchez, M. E. (2007). New Pythium taxa causing root rot in Mediterranean Quercus species in southwest Spain and Portugal. Journal of Phytopathology, 115, 289–295.Sánchez de Lorenzo-Cáceres J. M. (2001). Guía de las plantas ornamentales. S.A. Mundi-Prensa Libros. ISBN 9788471149374. 688 pp.Sánchez, M. E., Caetano, P., Ferraz, J., & Trapero, A. (2002). Phytophtora disease of Quercus ilex in south-western Spain. Forest Pathology, 32, 5–18.Sánchez, M. E., Sánchez, J. E., Navarro, R. M., Fernández, P., & Trapero, A. (2003). Incidencia de la podredumbre radical causada por Phytophthora cinnamomi en masas de Quercus en Andalucía. Boletín de Sanidad Vegetal-Plagas, 29, 87–108.Sánchez, M. E., Andicoberry, S., & Trapero, A. (2005). Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathology, 35, 115–125.Sánchez, M. E., Caetano, P., Romero, M. A., Navarro, R. M., & Trapero, A. (2006). Phytophthora root rot as the main factor of oak decline in southern Spain. In: Progress in Research on Phytophthora Diseases of Forest Trees. Proceedings of the Third International IUFRO Working Party S07.02.09. Meeting at Freising. Germany 11-18 September 2004. Brasier C. M., Jung T., Oßwald W. (Eds). Forest Research. Farnham, UK. pp. 149-154.Scanu, B., Linaldeddu, B. T., Deidda, A., & Jung, T. (2015). Diversity of Phytophthora species from declining Mediterranean maquis vegetation, including two new species, Phytophthora crassamura and P. ornamentata sp. nov. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0143234 .Schmitthenner, A. F., & Canaday, C. H. (1983). Role of chemical factors in the development of Phytophthora diseases. In: Phytophthora. Its biology, taxonomy, ecology, and pathology (pp.189-196). Ed. by Erwin D. C., Bartnicki-Garcia S., Tsao P. H. St. Paul, : The American Phytopathological Society.Scibetta, S., Schena, L., Chimento, A., Cacciola, S. A., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88, 356–368.Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409, 799–807.Thines, M. (2013). Taxonomy and phylogeny of Phytophthora and related oomycetes In: Phytophthora: A global perspective (pp. 11-18). Ed. by Lamour, K. Wallingford: CABI.Tsao, P. H. (1990). Why many Phytophthora root rots and crown rots of tree and horticultural crops remain undetected. EPPO Bulletin, 20, 11–17.Tuset, J. J., Hinarejos, C., Mira, J. L., & Cobos, M. (1996). Implicación de Phytophthora cinnamomi Rands en la enfermedad de la seca de encinas y alcornoques. Boletín de Sanidad Vegetal-Plagas, 22, 491–499.Vettraino, A. M., Barzanti, G. P., Bianco, M. C., Ragazzi, A., Capretti, P., Paoletti, E., & Vannini, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32, 19–28.Xia, K., Hill, L. M., Li, D. Z., & Walters, C. (2014). Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Annals of Botany, 114, 1747–1759

    RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito <it>Aedes aegypti </it>(Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal.</p> <p>Results</p> <p>Transcriptional changes that follow a blood meal in <it>Ae. aegypti </it>females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the <it>Ae. aegypti </it>reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. <it>Cis</it>-regulatory elements (CRE) and <it>cis</it>-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified.</p> <p>Conclusions</p> <p>This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in <it>Ae. aegypti </it>females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.</p

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Lutzomyia longipalpis urbanisation and control

    Full text link

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Cleavage modification did not alter blastomere fates during bryozoan evolution

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The study was funded by the core budget of the Sars Centre and by The European Research Council Community’s Framework Program Horizon 2020 (2014–2020) ERC grant agreement 648861 to A
    corecore