1,326 research outputs found

    Sebaceous Carcinoma of the Eyelid

    Get PDF
    Sebaceous gland carcinoma of the eyelid is a very rare, slow growing tumor arising from the meibomian glands. In contrast to squamous cell carcinoma and basal cell carcinoma which arise frequently from the lower lid, sebaceous carcinoma arises from the upper lid where meibomian glands are more numerous. We present a case of sebaceous carcinoma in an elderly lady who presented with a slow growing tumor in the lateral third of the lower lid, without any lymph node metastasis. The tumor was treated by wide excision and the eyelid was reconstructed by Tenzel semilunar flap

    Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.

    Get PDF
    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology

    Scaling approach to itinerant quantum critical points

    Full text link
    Based on phase space arguments, we develop a simple approach to metallic quantum critical points, designed to study the problem without integrating the fermions out of the partition function. The method is applied to the spin-fermion model of a T=0 ferromagnetic transition. Stability criteria for the conduction and the spin fluids are derived by scaling at the tree level. We conclude that anomalous exponents may be generated for the fermion self-energy and the spin-spin correlation functions below d=3d=3, in spite of the spin fluid being above its upper critical dimension.Comment: 3 pages, 2 figures; discussion of the phase space restriction modified and, for illustrative purposes, restricted to the tree-level analysis of the ferromagnetic transitio

    Electronic Liquid Crystal Phases of a Doped Mott Insulator

    Full text link
    The character of the ground state of an antiferromagnetic insulator is fundamentally altered upon addition of even a small amount of charge. The added charges agglomerate along domain walls at which the spin correlations, which may or may not remain long-ranged, suffer a π\pi phase shift. In two dimensions, these domain walls are ``stripes'' which are either insulating, or conducting, i.e. metallic rivers with their own low energy degrees of freedom. However, quasi one-dimensional metals typically undergo a transition to an insulating ordered charge density wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large in comparison to the CDW coupling between stripes. As a consequence, there exist novel, liquid-crystalline low-temperature phases -- an electron smectic, with crystalline order in one direction, but liquid-like correlations in the other, and an electron nematic with orientational order but no long-range positional order. These phases, which constitute new states of matter, can be either high temperature supeconductors or two-dimensional anisotropic ``metallic'' non-Fermi liquids. Evidence for the new phases may already have been obtained by neutron scattering experiments in the cuprate superconductor, La_{1.6-x}Nd_{0.4}Sr_xCuO_{4}.Comment: 5 pages in RevTex with two figures in ep

    How to realize a robust practical Majorana chain in a quantum dot-superconductor linear array

    Full text link
    Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions, which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermions is the supression of topological superconductivity by disorder. We show that Majorana fermions protected by a robust topological gap can occur at the ends of a chain of quantum dots connected by s-wave superconductors. In the appropriate parameter regime, we establish that the quantum dot/superconductor system is equivalent to a 1D Kitaev chain, which can be tuned to be in a robust topological phase with Majorana end modes even in the case where the quantum dots and superconductors are both strongly disordered. Such a spin-orbit coupled quantum dot - s-wave superconductor array provides an ideal experimental platform for the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to include more general proof for localized Majorana fermion

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Perspectives for next generation lithium-ion battery cathode materials

    Get PDF
    Transitioning to electrified transport requires improvements in sustainability, energy density, power density, lifetime, and approved the cost of lithium-ion batteries, with significant opportunities remaining in the development of next-generation cathodes. This presents a highly complex, multiparameter optimization challenge, where developments in cathode chemical design and discovery, theoretical and experimental understanding, structural and morphological control, synthetic approaches, and cost reduction strategies can deliver performance enhancements required in the near- and longer-term. This multifaceted challenge requires an interdisciplinary approach to solve, which has seen the establishment of numerous academic and industrial consortia around the world to focus on cathode development. One such example is the Next Generation Lithium-ion Cathode Materials project, FutureCat, established by the UK’s Faraday Institution for electrochemical energy storage research in 2019, aimed at developing our understanding of existing and newly discovered cathode chemistries. Here, we present our perspective on persistent fundamental challenges, including protective coatings and additives to extend lifetime and improve interfacial ion transport, the design of existing and the discovery of new cathode materials where cation and cation-plus-anion redox-activity can be exploited to increase energy density, the application of earth-abundant elements that could ultimately reduce costs, and the delivery of new electrode topologies resistant to fracture which can extend battery lifetime.</jats:p

    Perspectives for next generation lithium-ion battery cathode materials

    Get PDF
    Transitioning to electrified transport requires improvements in sustainability, energy density, power density, lifetime, and approved the cost of lithium-ion batteries, with significant opportunities remaining in the development of next-generation cathodes. This presents a highly complex, multiparameter optimization challenge, where developments in cathode chemical design and discovery, theoretical and experimental understanding, structural and morphological control, synthetic approaches, and cost reduction strategies can deliver performance enhancements required in the near- and longer-term. This multifaceted challenge requires an interdisciplinary approach to solve, which has seen the establishment of numerous academic and industrial consortia around the world to focus on cathode development. One such example is the Next Generation Lithium-ion Cathode Materials project, FutureCat, established by the UK’s Faraday Institution for electrochemical energy storage research in 2019, aimed at developing our understanding of existing and newly discovered cathode chemistries. Here, we present our perspective on persistent fundamental challenges, including protective coatings and additives to extend lifetime and improve interfacial ion transport, the design of existing and the discovery of new cathode materials where cation and cation-plus-anion redox-activity can be exploited to increase energy density, the application of earth-abundant elements that could ultimately reduce costs, and the delivery of new electrode topologies resistant to fracture which can extend battery lifetime

    The use of CAM and conventional treatments among primary care consulters with chronic musculoskeletal pain

    Get PDF
    Chronic musculoskeletal pain is the single most cited reason for use of complementary and alternative medicine (CAM). Primary care is the most frequent conventional medical service used by patients with pain in the UK. We are unaware, however, of a direct evidence of the extent of CAM use by primary care patients, and how successful they perceive it to be. Methods Aims and objectives To determine CAM use among patients with chronic musculoskeletal pain who have consulted about their pain in primary care. Study design Face-to-face interview-based survey. Setting Three general practices in North Staffordshire. Participants Respondents to a population pain survey who had reported having musculoskeletal pain in the survey and who had consulted about their pain in primary care in the previous 12 months as well as consenting to further research and agreeing to an interview. Information was gathered about their pain and the use of all treatments for pain, including CAM, in the previous year. Results 138 interviews were completed. 116 participants (84%) had used at least one CAM treatment for pain in the previous year. 65% were current users of CAM. The ratio of over-the-counter CAM use to care from a CAM provider was 3:2. 111 participants (80%) had used conventional treatment. 95 (69%) were using a combination of CAM and conventional treatment. Glucosamine and fish oil were the most commonly used CAM treatments (38%, 35% respectively). Most CAM treatments were scored on average as being helpful, and users indicated that they intended to use again 87% of the CAM treatments they had already used. Conclusion We provide direct evidence that most primary care consulters with chronic musculoskeletal pain have used CAM in the previous year, usually in combination with conventional treatments. The high prevalence and wide range of users experiences of benefit and harm from CAM strengthen the argument for more research into this type of medicine to quantify benefit and assess safety. The observation that most users of conventional medicine also used CAM suggests a continuing need for more investigation of effective pain management in primary care
    • …
    corecore