Semiconducting nanowires in proximity to superconductors are promising
experimental systems for Majorana fermions, which may ultimately be used as
building blocks for topological quantum computers. A serious challenge in the
experimental realization of the Majorana fermions is the supression of
topological superconductivity by disorder. We show that Majorana fermions
protected by a robust topological gap can occur at the ends of a chain of
quantum dots connected by s-wave superconductors. In the appropriate parameter
regime, we establish that the quantum dot/superconductor system is equivalent
to a 1D Kitaev chain, which can be tuned to be in a robust topological phase
with Majorana end modes even in the case where the quantum dots and
superconductors are both strongly disordered. Such a spin-orbit coupled quantum
dot - s-wave superconductor array provides an ideal experimental platform for
the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to
include more general proof for localized Majorana fermion