7,334 research outputs found
Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex
Hall et al. (Hall et al., 2002, Cerebral Cortex 12:140–149) recently showed that pulsed frequency-modulated tones generate considerably higher activation than their unmodulated counterparts in non-primary auditory regions immediately posterior and lateral to Heschl’s gyrus (HG). Here, we use fMRI to explore the type of modulation necessary to evoke such differential activation. Carrier signals were a single tone and a harmonic-complex tone, with a 300 Hz fundamental, that were modulated at a rate of 5 Hz either in frequency, or in amplitude, to create six stimulus conditions (unmodulated, FM, AM). Relative to the silent baseline, the modulated tones, in particular, activated widespread regions of the auditory cortex bilaterally along the supra-temporal plane. When compared with the unmodulated tones, both AM and FM tones generated significantly greater activation in lateral HG and the planum temporale, replicating the previous findings. These activation patterns were largely overlapping, indicating a common sensitivity to both AM and FM. Direct comparisons between AM and FM revealed a higher magnitude of activation in response to the variation in amplitude than in frequency, plus a small part of the posterolateral region in the right hemisphere whose response was specifically AM-, and not FM-, dependent. The dominant pattern of activation was that of co-localized activation by AM and FM, which is consistent with a common neural code for AM and FM within these brain regions
Spectral and temporal processing in human auditory cortex
Hierarchical processing suggests that spectrally and temporally complex stimuli will evoke more activation than do simple stimuli, particularly in non-primary auditory fields. This hypothesis was tested using two tones, a single frequency tone and a harmonic tone, that were either static or frequency modulated to create four stimuli. We interpret the location of differences in activation by drawing comparisons between fMRI and human cytoarchitectonic data, reported in the same brain space. Harmonic tones produced more activation than single tones in right Heschl's gyrus (HG) and bilaterally in the lateral supratemporal plane (STP). Activation was also greater to frequency-modulated tones than to static tones in these areas, plus in left HG and bilaterally in an anterolateral part of the STP and the superior temporal sulcus. An elevated response magnitude to both frequency-modulated tones was found in the lateral portion of the primary area, and putatively in three surrounding non-primary regions on the lateral STP (one anterior and two posterior to HG). A focal site on the posterolateral STP showed an especially high response to the frequency-modulated harmonic tone. Our data highlight the involvement of both primary and lateral non-primary auditory regions
Estimating the Accuracy of Spectral Learning for HMMs
Hidden Markov models (HMMs) are usually learned using
the expectation maximisation algorithm which is, unfortunately, subject
to local optima. Spectral learning for HMMs provides a unique, optimal
solution subject to availability of a sufficient amount of data. However,
with access to limited data, there is no means of estimating the accuracy
of the solution of a given model. In this paper, a new spectral evaluation
method has been proposed which can be used to assess whether the
algorithm is converging to a stable solution on a given dataset. The
proposed method is designed for real-life datasets where the true model is
not available. A number of empirical experiments on synthetic as well as
real datasets indicate that our criterion is an accurate proxy to measure
quality of models learned using spectral learning
Spatial heterogeneity lowers rather than increases host-parasite specialization.
This is the final version of the article. Available from the publisher via the DOI in this record.Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host-parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ϕ2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host-parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host-parasite specialization.This project was funded by NERC (NE/G006938/2),
BBSRC and the AXA Research Fund. ABu is supported
by a Royal Society Wolfson Research Merit Award. ABe
is supported by a Leverhulme Early Career Research
Fellowship
Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations
This is the author accepted manuscript. The final version is available from OUP via the DOI in this record.Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.This work was funded by European Research Council and NERC (UK)
Binaural specialisation in human auditory cortex: an fMRI investigation of interaural correlation sensitivity
A listener's sensitivity to the interaural correlation (IAC) of sound plays an important role in several phenomena in binaural hearing. Although IAC has been examined extensively in neurophysiological studies in animals and in psychophysical studies in humans, little is known about the neural basis of sensitivity to IAC in humans. The present study employed functional magnetic resonance imaging to measure blood oxygen level-dependent (BOLD) activity in auditory brainstem and cortical structures in human listeners during presentation of band-pass noise stimuli between which IAC was varied systematically. The stimuli evoked significant bilateral activation in the inferior colliculus, medial geniculate body, and auditory cortex. There was a significant positive relationship between BOLD activity and IAC which was confined to a distinct subregion of primary auditory cortex located bilaterally at the lateral extent of Heschl's gyrus. Comparison with published anatomical data indicated that this area may also be cytoarchitecturally distinct. Larger differences in activation were found between levels of IAC near unity than between levels near zero. This response pattern is qualitatively compatible with previous measures of psychophysical and neurophysiological sensitivity to IAC
Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise
Effects of sound level on auditory cortical activation are seen in neuroimaging data. However, factors such as the cortical response to the intense ambient scanner noise and to the bandwidth of the acoustic stimuli will both confound precise quantification and interpretation of such sound-level effects. The present study used temporally "sparse" imaging to reduce effects of scanner noise. To achieve control for stimulus bandwidth, three schemes were compared for sound-level matching across bandwidth: component level, root-mean-square power and loudness. The calculation of the loudness match was based on the model reported by Moore and Glasberg [Acta Acust. 82, 335–345 (1996)]. Ten normally hearing volunteers were scanned using functional magnetic resonance imaging (fMRI) while listening to a 300-Hz tone presented at six different sound levels between 66 and 91 dB SPL and a harmonic-complex tone (F0 = 186 Hz) presented at 65 and 85 dB SPL. This range of sound levels encompassed all three bases of sound-level matching. Activation in the superior temporal gyrus, induced by each of the eight tone conditions relative to a quiet baseline condition, was quantified as to extent and magnitude. Sound level had a small, but significant, effect on the extent of activation for the pure tone, but not for the harmonic-complex tone, while it had a significant effect on the response magnitude for both types of stimulus. Response magnitude increased linearly as a function of sound level for the full range of levels for the pure tone
Barley Hv CIRCADIAN CLOCK ASSOCIATED 1 and Hv PHOTOPERIOD H1 Are Circadian Regulators That Can Affect Circadian Rhythms in Arabidopsis.
Circadian clocks regulate many aspects of plant physiology and development that contribute to essential agronomic traits. Circadian clocks contain transcriptional feedback loops that are thought to generate circadian timing. There is considerable similarity in the genes that comprise the transcriptional and translational feedback loops of the circadian clock in the plant Kingdom. Functional characterisation of circadian clock genes has been restricted to a few model species. Here we provide a functional characterisation of the Hordeum vulgare (barley) circadian clock genes Hv circadian clock associated 1 (HvCCA1) and Hv photoperiodh1, which are respectively most similar to Arabidopsis thaliana circadian clock associated 1 (AtCCA1) and pseudo response regulator 7 (AtPRR7). This provides insight into the circadian regulation of one of the major crop species of Northern Europe. Through a combination of physiological assays of circadian rhythms in barley and heterologous expression in wild type and mutant strains of A. thaliana we demonstrate that HvCCA1 has a conserved function to AtCCA1. We find that Hv photoperiod H1 has AtPRR7-like functionality in A. thaliana and that the effects of the Hv photoperiod h1 mutation on photoperiodism and circadian rhythms are genetically separable.ZR is grateful to the National Institute of Agricultural Botany for the Award of Scholarship.
We acknowledge funding from a Marie Curie Early Stage Training project MEST-CT-2005-020526 for JK and the BBSRC-DTP for funding SC. AARW and MCM are grateful to the BBSRC for the award of BBSRC Grant BB/M006212/1, which supported aspects of the study.This is the final published version. It first appeared at http://dx.doi.org/10.1371/journal.pone.012744
- …
