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ABSTRACT 

A listener’s sensitivity to the interaural correlation (IAC) of sound plays an 

important role in several phenomena in binaural hearing. Although IAC has been 

examined extensively in neurophysiological studies in animals and in psychophysical 

studies in humans, little is known about the neural basis of sensitivity to IAC in 

humans. The present study employed functional magnetic resonance imaging to 

measure blood oxygen level dependent (BOLD) activity in auditory brainstem and 

cortical structures in human listeners during presentation of band-pass noise stimuli 

between which IAC was varied systematically. The stimuli evoked significant bilateral 

activation in the inferior colliculus, medial geniculate body, and auditory cortex. There 

was a significant positive relationship between BOLD activity and IAC which was 

confined to a distinct sub-region of primary auditory cortex located bilaterally at the 

lateral extent of Heschl’s Gyrus. Comparison with published anatomical data indicated 

that this area may also be cytoarchitecturally distinct. Larger differences in activation 

were found between levels of IAC near unity than between levels near zero. This 

response pattern is qualitatively compatible with previous measures of psychophysical 

and neurophysiological sensitivity to IAC.  
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INTRODUCTION 

The interaural correlation (IAC) of a sound is one measure of the similarity 

between the waveforms at the left and right ears. IAC has been defined as “the point-

by-point correlation coefficient computed ... after an appropriate delay has been 

imposed on one of the inputs [at the ears] to maximise the correlation” (Grantham, 

1995, p. 302-303). In effect, therefore, IAC is a measure of the randomness of the 

interaural timing differences (ITDs) of the frequency components that made up a 

sound. 

Human listeners can be remarkably sensitive to differences in IAC. For example, 

they can detect a difference of less than 2% between a test signal and a reference 

signal with an IAC of 1.0 (e.g. Culling et al., 2001; Gabriel and Colburn, 1981; 

Jeffress and Robinson, 1962; Pollack and Trittipoe, 1959). This sensitivity may 

underpin some of the useful functions of binaural processing. For example, a signal 

can be detected more easily in a masking noise if the signal has a different spatial 

location to the masker. Psychophysical studies suggest that the size of some aspects of 

this effect may be determined by sensitivity to IAC (e.g. Durlach et al., 1986; 

Bernstein and Trahiotis, 1996; Akeroyd and Summerfield, 2000). Changes in the IAC 

of a noise result in changes in the perceived “width” of the stimulus when presented 

through headphones. A noise with an IAC of 1.0 is typically perceived as sound with a 

compact source located at the centre of the head. If the IAC is reduced, then the image 

broadens, eventually splitting into two separate images, one at each ear, for an IAC of 

0.0 (Blauert and Lindemann, 1986). 

Neurophysiological studies in animals have provided substantial evidence of the 

neural basis for sensitivity to binaural information in a pathway projecting from the 

medial division of the superior olivary complex (MSO) via the inferior colliculus (IC) 
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and the medial geniculate body (MGB) to primary auditory cortex (Brugge et al., 

1969). The MSO is the primary site of convergence of neural input from the two ears. 

It is the place where neuronal sensitivity to differences in ITD is first observed (Yin 

and Chan, 1990). This sensitivity arises in a network of delay lines and coincidence 

detectors which convert differences in time of arrival at the ears into differences in the 

profile of neural activity across a spatial array of neurons (Jeffress, 1948;  Yin et al., 

1987). Coincidence detection is equivalent to a cross-correlation of the inputs from the 

two ears and it is now widely accepted that the extraction of interaural timing 

information depends on some form of cross-correlation network (Stern and Trahiotis, 

1995). 

This network can be simulated by filtering the signals presented to the two ears 

with matched arrays of band-pass filters (simulating frequency analysis in the 

cochleae) and computing the cross-correlation function between the outputs of the 

pairs of filters with corresponding centre frequencies (simulating the processes of 

delay and coincidence detection). The results of such a simulation are plotted in Figure 

1 for six noises with values of IAC ranging from 1.0 (top-left panel) to 0.0 (bottom-

right panel). In each plot, the y-axis is the center frequency of the bandpass filter 

(determining the characteristic frequency of the coincidence detector) and the x-axis is 

an internal time delay (corresponding to differences in the length of the delay lines 

that drive the coincidence detector). The amplitude of the plot indicates the probability 

of a coincidence occurring for a particular combination of characteristic frequency and 

internal delay. The straight “ridge” in the cross-correlation pattern when the IAC is 1.0 

is characteristic for such a stimulus, indicating that in all channels the effective ITD is 

zero. The sweeping arches at other delays arise at integer multiples of the period of 

each channel (i.e. integer multiples of the reciprocal of the center frequency). For 
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present purposes, the most important feature is that the prominence of the various 

ridges declines as the IAC is reduced, becoming random when the IAC is 0.0. These 

changes in the simulated patterns may underlie the broadening of the  perceived width 

of the stimuli as the IAC is reduced. 

Consistent with the general predictions of cross-correlation models, 

electrophysiological recordings of ITD-sensitive neurons in the IC of the guinea pig 

show that the response to band-pass noise is strongly influenced by the IAC of the 

stimuli (Palmer et al., 1999). Further, there is good evidence that the ITD-sensitivity 

of low-frequency cells in MSO and IC of the cat also reflects a process of interaural 

cross correlation (Yin et al., 1987). Compatible evidence has also been obtained in the 

optic tectum of the barn-owl (the avian homologue of the mammalian IC), where the 

responsiveness of ITD-sensitive neurones declines as the degree of IAC is decreased 

from unity (Saberi et al., 1998). Moreover, these cells display greater sensitivity to 

small decreases in IAC from unity than to small increases in IAC from zero. In this 

respect, they parallel human psychophysical sensitivity to differences in IAC (Culling 

et al., 2001). 

A limitation to further integration of the psychophysical and neurophysiological 

evidence of sensitivity to IAC is that the psychophysical evidence has largely been 

obtained in humans, while the neurophysiological evidence is confined to animal 

studies. Further, since neurophysiological sensitivity to IAC has primarily been 

examined in the auditory brainstem, there is little evidence of the cortical sensitivity to 

IAC. In order to obtain such evidence, the present study used functional magnetic 

resonance imaging (fMRI) to examine the sensitivity of key structures in the human 

ascending auditory system to variations in the IAC of band-pass noise. 
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MATERIALS AND METHODS 

Participants 

Seventeen right-handed adults, aged between 19 and 52 years, participated. None 

had a history of neurological impairment and all had pure-tone hearing thresholds 

within the normal range (<20dB HL) for octave frequencies between 500 and 4000 

Hz, inclusive. All participants were familiarized with the scanning environment and 

task requirements prior to giving written consent. The study was approved by the 

Nottingham University Medical School Research Ethics Committee.  

Stimuli 

The stimuli were 900-ms duration band-pass noise bursts (0-1.5 kHz) with 40-ms 

raised-cosine ramps applied to the onset and offset. Each noise had one of six fixed 

values (ρ) of IAC: 1.00, 0.93, 0.80, 0.60, 0.33 or 0.00. These six levels were 

determined through piloting testing with experienced listeners (TWB and AQS) and 

defined approximately equal perceptual steps between noises with IACs of unity and 

zero (Culling et al., 2001; Pollack and Trittipoe, 1959). 

The bandwidth and intensity of the noise stimuli were the same at each ear within 

conditions and were constant across conditions. The only difference between 

conditions was the statistical correlation (ρ) between the noise signal at each ear. Such 

stimuli achieve the necessary control over the potentially confounding variables of 

level and bandwidth when seeking to locate activation that is solely due to a binaural 

analysis. 

The stimuli were generated using Licklider and Dzendolet’s (1948) three-noise 

method (see also Jeffress and Robinson, 1962) implemented in MATLAB (Akeroyd, 

2001). The left channel of each stimulus was made by adding one random noise to a 

second statistically independent noise in a power ratio of (ρ):(1-ρ). The right channel 
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was made by adding the first noise to a third independent noise in the same power 

ratio. Each initial noise was constructed in the frequency domain, using a 39690-point 

spectrum buffer with a sampling rate of 44100 Hz. The real and imaginary values of 

all the frequency points below 1500 Hz were drawn randomly from a Gaussian 

distribution, whereas the real and imaginary values of all higher-frequency points were 

set to zero. An inverse Fast Fourier Transform was applied to the resulting spectrum to 

yield a waveform of 900-ms duration. Raised-cosine ramps of 40-ms duration were 

then applied to the onset and offset.  

Using this procedure, 40 noises with each level of IAC were synthesised. Thirty 

trains of eight noise bursts were constructed for each level of IAC by randomly 

selecting subsets of eight exemplars from the set of 40, with replacement, and 

concatenating them separated by 100-ms silent intervals. With 6 levels of IAC and 30 

stimulus trains at each level, 180 stimulus trains were constructed in total (Note 1).  

Stimulus trains were presented in a different random order to each participant. 

Stimuli were presented binaurally through headphones at 72 dB SPL. The headphones 

were designed for use during fMRI and consisted of electrostatic drivers mounted in 

industrial ear defenders (Palmer et al., 1998).  

fMRI Acquisition 

Images were acquired using a 3T whole-body MRI system equipped with a head 

gradient coil and a birdcage radio-frequency receiver coil (Bowtell et al., 1994). 

Contiguous multi-slice T2-weighted images were acquired using echo-planar imaging 

(EPI) (TE ‹ 40 ms; flip angle 90 degrees). Each whole-head volume was acquired in 

the coronal orientation (44 slices; 4 mm3 voxels; 64 x 64 matrix; 3.4 s/volume) every 

11.6 s. A stimulus train was delivered during the 8.2-s interval between volume 

acquisitions. This clustered and ‘sparse’ imaging technique reduces the influence of 
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scanner noise on the blood oxygen level dependent (BOLD) response to the auditory 

stimulus of interest (Edmister et al., 1999; Hall et al., 1999). In addition to the 180 

volumes which were acquired on trials when a stimulus train was presented, 30 

volumes, preceded by an 8.2-s silent interval were acquired at random intervals to 

provide an estimate of baseline BOLD activity. For each subject, 107 volumes were 

acquired in each of two sequential scanning sessions, giving a total of 214 volumes.  

Task 

During imaging, participants lay supine in the MR scanner with their eyes closed. 

They were instructed to make a button press with their right index finger immediately 

after each volume acquisition. Responses were scored as correct if they were made 

within 2 s of the end of the volume acquisition.  

Data Analysis 

EPI data were analysed with the SPM99 software package 

(http://www.fil.ion.ucl.ac.uk/spm/spm99). The first two volumes in each session were 

excluded to avoid T1 relaxation effects. The remaining 210 volumes were submitted 

to the analysis sequence described below. 

Image pre-processing 

Motion-corrected images were computed for each participant’s EPI time series. 

Movement did not exceed a translation of 3 mm or a rotation of 3° (with the majority 

of translations and rotations being less than 1 mm or 1°). An AVI-format animation 

was created from each motion-corrected image time-series and visually examined. No 

residual movement could be detected in any time-series. A motion-corrected mean 

image was also computed for each participant and was coregistered and spatially 

normalised to a standardised brain space using a modified version of the SPM EPI 

template which incorporated the signal loss in the middle and inferior temporal lobes 
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observed at 3T. The brain space was defined by the Montreal Neurological Institute 

(MNI). The resulting transformation parameters were then applied to all images, 

creating a set of images with a 2-mm3 voxel resolution. These realigned and spatially 

normalised images were then smoothed, using an 8-mm Full-Width Half-Maximum 

Gaussian filter, high-pass filtered (<160 s), scaled to the global mean intensity and 

corrected for first-order auto-correlation.  

Anatomical localisation of functional activity 

Three a priori regions of interest (ROIs) were defined via visual inspection of a 

high-resolution (1 mm3) single-subject normalised structural image provided by the 

MNI (“COLIN27” see Brett et al., 2002), which occupied the same MNI space  as the 

normalised EPI images. Using previously established procedures (Griffiths et al., 

2001; Harms and Melcher, 2002; Rademacher et al., 2002), IC, MGB, and superior 

temporal gyrus (STG) were identified in the COLIN27 image. ROIs corresponding to 

left and right IC and MGB were defined by placing a sphere of 5-mm radius at the 

anatomically-defined centre of each nucleus: (XYZ mm: IC left:  

–4 –34 –12; IC right: +6 –35 –12; MGB left: -15 –26 –7;  MGB right: +16 –25 –7).  

A third ROI that encompassed the auditory cortex (AC) on the STG,  extending 

into the lateral and superior temporal sulci, was created to provide an a priori volume 

for correction for multiple comparisons across voxels in the auditory cortex. This ROI 

incorporated primary and non-primary subdivisions of auditory cortical regions 

(Galaburda and Sanides, 1980; Morosan et al., 2001; Penhune et al., 1996; 

Rademacher et al., 2001; Rivier and Clarke, 1997; Westbury et al., 1999). Since these 

subdivisions probably correspond to functional differences in perceptual processing, a 

more comprehensive definition of the anatomical location of BOLD activity within 

AC was carried out as follows.  
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Initially, spatial coordinates of activation maxima were transformed from MNI 

space into Talairach space (Brett et al., 2002) in order to use an automated labelling 

system for grey/white matter and for Brodmann areas (Lancaster et al., 2000). While 

the anatomical localisation of fMRI activity using the Brodmann and Talairach 

reference systems provides only general information regarding auditory cortical 

anatomy, it establishes a basis for comparison with regions of activation reported in 

previous auditory fMRI studies. 

Anatomically-defined probability maps of auditory cortical regions that already 

occupied the MNI spatial reference system (Johnsrude, 2001) were also used to define 

the location of regions of activation. These include probability maps of the 

morphological borders of Heschl’s gyrus (HG) (Penhune et al., 1996) and planum 

temporale (PT) (Westbury et al., 1999). Probability maps of 3 putative subdivisions of 

the primary auditory cortex, based on cytoarchitectural criteria, have also been defined 

(Morosan et al., 2001; Rademacher et al., 2001). These subdivisions are termed Te1.1, 

Te1.0, and Te1.2, and are placed along the medial-lateral axis of HG. Since the 

original probability values for each map reflect a different scale, all values were 

rescaled to the maximum probability value within each map in order to allow 

meaningful between-map comparisons to be made. 

The combination of probabilistic maps with the Talairach and Brodmann 

reference systems provides converging evidence for, and a means to distinguish 

between, neurophysiologically and morphologically distinct regions of the auditory 

cortex. 

Statistical Parametric Mapping 

The EPI image time series were analysed using an epoch-based general linear 

model analysis (Friston et al., 1995). The relationship between BOLD activity and 
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IAC level was examined using the successive forward modelling of orthogonal 

polynomial terms (Buchel et al., 1998). In this approach, t-statistic images were 

generated to reveal those voxels where BOLD activity showed a significant 

relationship with IAC level in terms either of 0th-order (all IAC levels vs silence), 1st-

order (linear), or 2nd-order (quadratic) covariation. The 0th-order term is equivalent to 

a simple statistical subtraction of the silent baseline from conditions involving noise 

stimulation (i.e box-car). Therefore voxels showing a significant 0th-order effect of 

IAC revealed those brain regions where a significant increase in activity occurred in 

response to noise stimulation relative to the silent baseline. Voxels showing a 

significant 1st-order effect show indicated regions where activity changed linearly with 

IAC level after any variance associated with the 0th-order term had been taken into 

account. Similarly, voxels showing a significant 2nd-order effect indicated regions 

where activity changed quadratically with IAC level after accounting for the 0th- and 

1st-order variations. These parametric analyses of the relationship between BOLD and 

IAC were initially applied to the data of individual subjects so that a subsequent 

random-effects group analysis could be undertaken (Friston et al., 1999).  

The two acquisition sessions were modelled as a single session. Two covariates 

specifying each session were included in the analysis model for each individual 

subject to control for any residual session effect. Six realignment parameters (yaw, 

pitch, and roll rotations and x, y, and z translations), obtained from the motion 

correction procedure, were also included as covariates of no interest. Covariates based 

on orthogonal polynomial expansions of IAC level (assuming equal intervals between 

adjacent IAC levels) were successively added to the model, until the addition of the 

next term did not significantly improve the model fit. Group SPM t-statistic images 
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were then computed for each order of the polynomial basis functions using the SPM 

random-effects approach. 

Significance thresholds for IC and MGB were calculated according to the spatial 

extent method of Friston (1997) using all suprathreshold voxels (p<0.001, 

uncorrected) within the regions defining IC or MGB, respectively. Significance 

thresholds in the region defined by AC were adjusted for multiple comparisons 

(p<0.05, corrected) using a small-volume correction based on the total number of 

voxels within the region defined by AC. 

 

RESULTS 

Task Performance 

Table 1 lists the percentages of volume acquisitions for which participants made a 

button press within the permitted 2-s window. The across-condition average of 86% 

did not vary with IAC level (one-way ANOVA, p>0.05). This result indicates that 

participants maintained an adequate, and uniform, level of arousal across conditions. 

<<TABLE 1>> 

Inferior Colliculus and Medial Geniculate Body  

Figure 2 shows group t-statistic images of all suprathreshold voxels for the 

0th-order polynomial effect of IAC (p<0.001, uncorrected) for brain-stem and 

subcortical regions. Figure 2a illustrates the close correspondence between these 

regions of activation and the anatomical location of IC. The spatial extent of activation 

for left and right IC was 43 and 40 voxels, respectively. The probability of obtaining 

activation with this spatial extent was significantly greater than chance (p<0.05) for 

the SPM component smoothness in the EPI images (9.65 voxels) (see Friston, 1997). 

The peaks of activation were located at x –4, y –38, z –10 mm and x +4, y –34, z –12 
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mm. These locations are within 4.5 mm and 2.2 mm of the anatomically-defined 

centres of the left and right inferior colliculi, respectively. At these peak locations, the 

noise conditions generated a 4.9% (left) and a 3.7% (right) increase in the response 

relative to the silent baseline. For the 0th-order effect in MGB, only one and two 

voxels survived threshold (p<0.001, uncorrected) on the left and right, respectively 

(Note 2) (Figure 2b). This activation failed to reach the spatial extent threshold of 9.65 

voxels. No suprathreshold voxels for either the linear or quadratic polynomial term 

were found in either IC or MGB and no other brain-stem or subcortical regions 

showed any significant activation. 

<<FIGURE 2>> 

The foregoing results indicate that significant activation to the noise stimuli 

relative to the silent baseline was obtained in IC, but that this activation did not vary 

with IAC level. In MGB, there was no significant activation for the noise stimuli, nor 

was there any variation in activity with IAC level (Note 3). 

Auditory Cortex 0th-order Effects 

Figure 3a shows the t-statistic image for all suprathreshold voxels for the 0th-order 

polynomial term (p<0.05, corrected). These voxels were almost entirely confined to 

auditory cortical regions. Comparison of Figures 3a and 3b demonstrates the close 

correspondence between the location of activation and the regions covered by the 

probability maps for HG, PT, and primary auditory cortex. 

<<FIGURE 3>> 

Table 2 lists standardised coordinates, anatomical locations, and probability-map 

results for four distinct maxima of activation found for the 0th-order polynomial term 

(Figure 3a). All maxima were located within primary and adjacent non-primary 

auditory regions of the STG. The most medial maxima in the left and right 
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hemispheres showed the highest probabilities of lying within HG according to 

Penhune’s map. These maxima also show the highest probabilities of falling within 

‘core-like’ (Te1.0) and ‘non-core-like’ (Te1.1) regions of primary auditory cortex 

according to Morosan’s maps.  

<<TABLE 2>> 

Only the most medial maximum in left hemisphere was labelled as primary 

auditory cortex (BA 41) according to the automated labelling system (Lancaster et al., 

2000). The most medial maximum in right hemisphere was labelled as BA22, 

suggesting a location anterior to primary auditory cortex, although the corresponding 

Talairaich label was HG. While the Brodmann and Talairach labels, at best, provide 

only a general guide to the anatomical locations of activation, the medial maxima in 

both hemispheres are located within spatially extended clusters of activation which 

follow the typical oblique orientation of HG, and which largely incorporate the medial 

aspects of HG. The medial activation overlaps with the medial two-thirds of HG and 

Te1.0, indicating that activation encompasses primary auditory cortex.  

In contrast to the relatively symmetric location and orientation of the more medial 

maxima, the more lateral maxima were asymmetric, being located in BA22 and BA42. 

The most lateral maximum in the right hemisphere occupied the most anterior location 

of any of the four maxima, with a relatively low probability for Penhune’s map of HG 

but with higher probabilities for Morosan’s Te1.0 and Te1.2 regions (Figure 3b). The 

right lateral peak suggests a location in either the core or non-core like regions of 

primary auditory cortex (Morosan et al., 2001). In contrast the most lateral maximum 

in the left hemisphere was the most posterior of the four maxima and showed the 

highest overall probability for the non-primary auditory region, PT, according to 

Budd et al.: Auditory fMRI and interaural correlation 14 



Westbury’s probability map, with no corresponding values for either Morosan’s or 

Penhune’s maps.  

Auditory Cortex 1st-order Effects 

A significant linear effect (1st-order polynomial) was found in two bilateral 

regions anterolaterally in HG (Figure 4a). The introduction of the linear polynomial 

term led to a significant (p<0.05, corrected) improvement in fit between BOLD 

activity and IAC level, beyond that already accounted for by the 0th-order term. This 

result reveals that BOLD activity in these discrete and anatomically symmetric 

cortical regions showed a significant and positive linear relationship with IAC level. 

No additional suprathreshold voxels were found by adding a 2nd-order polynomial 

term to the analysis model. Similarly, no suprathreshold voxels were found for the 

negative 1st-, or 2nd-order polynomial terms. The more widespread regions of bilateral 

activation found for the 0th-order polynomial term are absent from Figure 4a. This 

result indicates that most of the activity in STG in the 0th-order t-statistic images 

(Figure 3a) reflected a general activation to a noise stimulus, rather than any specific 

sensitivity to IAC level. 

<<FIGURE 4>> 

<<TABLE 3>> 

Table 3 lists the standardised coordinates, anatomical labels, and probability-map 

values for the peak voxels in the two symmetric bilateral regions in Figure 4a where 

activity showed a significant linear effect of IAC. At these two locations, the noise 

conditions generated a 4.9% and a 4.1% increase in the response in the left and right 

hemispheres, respectively, relative to the silent baseline. In comparison, the difference 

between the response for IAC levels of zero and unity ranged from 0.4% and 0.3%. 
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Thus, the effect of IAC represents a small proportion of the overall BOLD sensitivity 

to stimulation by noise.  

Figure 4b illustrates the results of the probability-map analysis for the linear 

effect of IAC. This analysis reveals that all 18 suprathreshold voxels (14 left; 4 right) 

which showed a significant linear covariation with IAC level were located within a 

non-core region of primary auditory cortex (Te1.2). This pattern can be distinguished 

from the activated regions for the 0th-order analysis (Figure 3a) as the probability map 

values for HG and PT are lower, and the values for Te1.2 are higher, for both the left- 

and right-hemisphere activation maxima. Therefore, the cortical regions which 

showed a consistent covariation with IAC were confined to the antero-lateral extent of 

primary auditory cortex. These were anatomically distinct from the cortical regions 

where the greatest increases in BOLD activity relative to the silent baseline were 

observed (i.e Te1.0). 

 <<FIGURE 5>> 

Figure 5 shows, for each IAC level, the mean raw (adjusted) BOLD activity 

averaged over all 18 suprathreshold voxels where a significant and positive linear 

effect of IAC level was obtained. The moderate departure from linearity of BOLD 

signal magnitude follows a positive accelerating function of IAC level. The smallest 

increase occurred between IAC levels 0.00 and 0.33, and the largest increase occurred 

between IAC levels 0.93 and 1.00.  
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DISCUSSION 

IAC sensitivity in auditory cortex 

Auditory cortical regions showed the greatest sensitivity to IAC of the three 

anatomical areas examined. The analysis provided evidence of a discrete bilateral 

cortical region where BOLD activity showed a significant linear increase with 

increasing IAC level. This linear covariation between BOLD activity and IAC level 

was confined to two bilateral and symmetric regions in the lateral part of HG. These 

regions correspond to a cytoarchitecturally-distinct subdivision of primary auditory 

cortex, Te1.2, as defined in anatomical studies (Morosan et al., 2001). The anatomical 

location of these IAC-sensitive regions can be distinguished from other auditory 

cortical regions where suprathreshold values were found in the 0th-order polynomial 

effect (Figure 3a). These other regions responded to noise, irrespective of the level of 

IAC, and were located posteriorly along the medial two-thirds of HG (Penhune et al., 

1996) in primary auditory cortex (Te1.0 and Te1.1) (Morosan et al., 2001) as well as 

PT (Westbury et al., 1999). 

Region Te1.2 has been described as a ‘transitional zone’ between primary and 

non-primary auditory fields (Morosan et al., 2001). While Te1.2 shares the typical 

features of a primary sensory area (i.e. small granular cells, prominent layer IV), it can 

be distinguished from core regions of primary auditory cortex as a result of a broader 

layer III which contains clusters of medium size IIIc pyramid cells (Morosan et al., 

2001). These same features are also found in surrounding ‘belt’ regions of auditory 

cortex (Hackett et al., 2001). The present results suggest that the anatomically-distinct 

auditory cortical region, Te1.2, may also represent a functionally distinct auditory 

cortical region in terms of sensitivity to IAC. 
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The observed anatomical specificity of IAC sensitivity may reflect a cortical 

specialisation for binaural analysis in low frequency regions of auditory cortex. Non-

human primate research has shown that cells in macaque primary auditory cortex with 

low characteristic frequencies are more likely to show ITD sensitivity (Brugge et al., 

1969) and binaural interactions (Reser et al., 2000) than are high-frequency cells. In 

humans, recent fMRI studies indicate that anterior-lateral regions of HG show the 

greatest specificity to low frequency sounds (<660 Hz) (Schonwiesner et al., 2002; 

Talavage et al., 2000). The reported Talairach coordinates of the centres of low-

frequency responsive cortical fields (Talavage et al: 53.6, -1.3, 1.7 and -51.9, -16.3, 

9.0; Schonwiesner et al.,: -47.4, -11.1, 7.0-mm) are close to the Talairach coordinates 

of  IAC sensitivity maxima found within region Te1.2 in the present study (-55, -8, 2-

mm). The possibility that IAC-sensitive regions of human auditory cortex are located 

in regions which respond preferentially to low frequency stimulation is entirely 

consistent with neurophysiological and psychophysical evidence that sensitivity to 

ITD and IAC is largely confined to low frequency stimulation (Yin et al., 1987). 

An alternative to the interpretation that region Te1.2 plays a specific role in the 

analysis or representation of binaural information, is that the sensitivity of Te1.2 to 

IAC may reflect a more general role in the analysis of sounds in which temporal 

patterning is displayed across frequency. Support for the latter role comes from the 

demonstration that the region is activated not only by IAC but also by another type of 

acoustic signal that requires time-interval processing and across-frequency integration. 

“Iterated rippled noise” (IRN) has a pitch whose strength is determined by the 

temporal regularity of the signal (e.g. Yost et al., 1996). Griffiths et al. (1998), in a 

neuro-imaging study, demonstrated that activation in the lateral part of HG increased 

systematically with the degree of temporal regularity of an IRN. Unlike IAC, the 
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temporal regularity in an IRN is determined by the monaural input from each ear, 

rather than by a binaural comparison of the input from the two ears. However, just as 

the salience of IAC is conveyed by the relationship between the cross-correlation 

pattern in many frequency channels (Figure 1), so the salience of the pitch in an IRN 

is greatest when the period of the temporal patterning is consistent across frequency 

channels (Figure 1 in Grifffiths et al., 1998). In the case of IAC, the integration across 

frequency occurs after the initial computation of cross-correlation and is apparent at 

the level of the IC (Mori, 1997). However, precisely how binaural temporal 

information is combined across frequency channels and refined at higher auditory 

centres remains unresolved (Saberi et al., 1998; Shackleton et al., 1992; Stern and 

Trahiotis, 1995). Nonetheless, the regions shown to be sensitive to binaural temporal 

regularity in the present study are close to the regions shown to be sensitive to 

monaural temporal regularity in the study of Griffiths et al. (1998). This 

correspondence suggests that region Te1.2 could also be specialised for the across-

frequency integration of evidence of detailed temporal patterning. 

IAC sensitivity in inferior colliculus and medial geniculate body. 

No significant relationship was found between IAC and BOLD activity in IC or 

MGB. This result was unexpected given evidence from electrophysiological 

recordings in animals that cells in IC are sensitive to the degree of interaural 

correlation in band-pass noise stimuli (Palmer et al., 1999; Saberi et al., 1998). BOLD 

activity in IC has also proved to be a sensitive measure of variations in some 

characteristics of monaural acoustic stimulation. This result has been demonstrated for 

variations in temporal characteristics of both the fine structure and the envelope of 

sounds (Giraud et al., 2000; Griffiths et al., 1998; Ackermann et al., 2001; Harms et 

al., 2002).  
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Several explanations might account for the lack of BOLD sensitivity to IAC level 

in IC. One possibility is that cardiac gating of EPI volume acquisition was not used in 

the present experiment. This technique has been employed previously to reduce the 

effects on EPI images of the pulsatile motion of brainstem structures that accompanies 

the cardiac cycle (Guimaraes et al., 1998). The absence of cardiac gating may have 

reduced the sensitivity of fMRI to small differences in BOLD activity in IC. This 

possibility seems unlikely, however, given that the effect size of the activation to noise 

relative to the silent baseline in IC was as large as that found in auditory cortical 

regions. Also, BOLD sensitivity in IC to variations in stimulus rate without cardiac 

gating has been reported in previous auditory fMRI studies (Ackermann et al., 2001).  

Another possibility is that the changes in neural activity reported in single-unit 

studies in animals following manipulation of IAC are not manifest as increases or 

decreases in the overall level of neural activity as reflected in the BOLD response. In 

fact, complex interactions of excitatory and inhibitory potentials occur in IC (Oliver, 

2000). These interactions subserve the integration of across-frequency ITD 

information between neurons in the external and central nuclei of the IC and are 

thought to resolve phase ambiguities in individual spectral channels carrying ITD 

information (Mori, 1997). These complex interactions may not be manifest as changes 

in the regional haemodynamic activity that is reflected in the BOLD response. 

The psychophysical basis of IAC sensitivity in auditory cortex 

The positively accelerating form of the relationship between BOLD activity and 

IAC level found in region Te1.2 is identical to the form consistently reported in 

psychophysical studies in humans as well as in intracellular recordings from the 

auditory brain stem of animals. In the present study, smaller increases in BOLD signal 

were found when IAC was increased from 0 to 0.33 and from 0.33 to 0.60 than when 
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IAC was increased from 0.93 to 1.00 (Figure 5). Compatibly, human listeners are 

more sensitive to differences in IAC close to unity than zero (Culling et al., 2001; 

Gabriel and Colburn, 1981; Pollack and Trittipoe, 1959). Therefore, the same size of 

change in interaural correlation leads to a larger perceptual change at an IAC near 1.0 

than at an IAC near 0.0.  

The correspondence of the relationship between BOLD activity and IAC, on the 

one hand, and perceptual sensitivity to differences in IAC, on the other hand, suggests 

that the IAC-dependent cortical activity may reflect perceptual processes involved in 

listener’s sensitivity to IAC. Whatever the perceptual role of the neural process 

reflected in the sensitivity of lateral auditory cortical regions to IAC, it is almost 

certain that this process involves an abstract representation of binaural temporal 

information. IAC-sensitive cortical activity could not reflect the analysis of the fine 

temporal structure of binaural information itself, because this detail is translated from 

a time-code to a place code at an earlier stage in the ascending auditory system. That 

transformation starts in the medial superior olive and is essentially complete at the 

level of the IC (Eggermont, 2001; Palmer, 1995). Therefore the primary calculation of 

the level of IAC in a stimulus could not be performed in the auditory cortical regions 

that displayed parametric sensitivity to IAC. It seems more likely that the activity in 

these regions reflects higher-order analyses, possibly those that underpin a listener’s 

sensitivity to variations in the compactness of the stimuli according to their value of 

IAC. 

In summary, the present results provide evidence for a cytoarchitecturally-distinct 

region of the auditory cortex that is sensitive to subtle variations in binaural 

characteristics of sound. The sensitivity observed to the degree of interaural 

correlation of low-frequency band-pass noise is compatible with the perceptual 
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sensitivity of human listeners to interaural correlation established in psychophysical 

studies. The finding that the lateral part of HG in human auditory cortex is sensitive to 

subtle changes in the binaural characteristics of acoustic stimuli provides a basis for 

future examinations of binaural hearing using fMRI. 
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NOTES 

Note 1: Due to a programming error, in some conditions some subjects received either 29 

or 31 stimulus trains. As a result, the mean number of trains across subjects for each of the 

6 levels of IAC was 29.8, 30.2, 30.1, 29.6, 29.8, and 29.8. 

 

Note 2: Relatively large suprathreshold clusters were obtained bilaterally in MGB in a 

fixed-effects group analysis. This difference from the results of the random-effects 

analysis was due to the contribution of one experimental condition only (ρ=1.0), 

reinforcing the view that the results of fixed-effects group analyses may not be 

generalisable (see also Note 3).  

 

Note 3: In a separate analysis, t-statistic maps were generated for each IAC level relative 

to the silent baseline. These maps displayed a significantly larger extent of activation 

when the IAC level was 1.0, relative to the remaining IAC levels, in both auditory cortical 

regions and MGB, but not IC. Unlike the reported parametric analyses, the extent of 

activation when the IAC level was 1.0 survived statistical thresholding in MGB. 
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FIGURE CAPTIONS 

Figure 1: Binaural cross-correlograms of band-pass noises (0-1500Hz) with six levels of 

IAC ranging from zero to unity. The waveforms that would be presented to each ear were 

analysed with two banks of 40 gammatone filters with centre frequencies ranging from 100 

to 1500 Hz equally spaced on an ERB scale (Patterson, Allerhand, and Giguere, 1995). 

Each line in the correlogram is the cross-correlation function computed between the 

outputs of pairs of filters with corresponding centre frequencies (vertical axis). Each point 

on each line is the sum of cross-products of the amplitudes of samples in the two 

waveforms after a delay in the range from –2000 µs to +2000 µs was imposed on one of 

the waveforms (horizontal axis).  

 

Figure 2: (a) Group random-effects SPM t-statistic images for the 0th-order polynomial 

term for three orthogonal slices centred on the anatomically defined IC (white circles) 

superimposed on an individual T1 image; (b) Images as in (a) but with slices centred on the 

anatomical centre of MGB. All maps show t values for uncorrected threshold; where t 

>3.69 (p<0.001). Slice positions (± white) are given in MNI xyz mm coordinates. 

 

Figure 3: (a) Group random-effects t-statistic images for the 0th-order polynomial term, 

superimposed over an individual T1 image. Slice positions (± white) are given in MNI z 

coordinates for 4 axial slices centred on STG. (AC small-volume corrected thresholds, t 

>5.22 , p<0.05). (b) The spatial extent of the three auditory cortex probability maps for the 

same 4 axial slices as (a), which include Heschl’s Gyrus (Penhune et al., 1996), containing 

both primary (Morosan et al., 2001) and secondary auditory cortex, as well as the regions 

immediately posterior and superior, corresponding to planum temporale (Westbury et al., 

1999). 
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Figure 4: (a) Group random effects SPM t-statistic images showing all suprathreshold 

voxels where BOLD activity showed a 1st order (linear) polynomial covariation with IAC 

level, for four axial slices superimposed over an individual T1 image. Slice positions 

(± white) are given in MNI z coordinates. All images show small-volume corrected (AC-

ROI) thresholds (t>5.22, p<0.05). (b) The same four axial slices showing show three 

cytoarchitectural subdivisions of primary auditory cortex (Te1.1, Te1.0, and TE1.2) 

(Morosan et al, 2001). 

 

Figure 5: Mean raw (adjusted) BOLD signal averaged across all suprathreshold voxels 

that showed a significant linear covariation with IAC level in Figure 4 (a).  

 



Table 1:  Mean percentage (standard error) of key-press responses that proceeded 

volume acquisitions within the required 2-s time window. Results are given for each 

level of IAC (ρ) and for the silent baseline. 

Noise Silence 

ρ  

0.00 0.33 0.60 0.80 0.93 1.00  

87.2 

(5.49) 

87.1 

(5.26) 

84.7 

(5.81) 

86.8 

(5.31) 

86.3 

(5.71) 

84.7 

(6.55) 

84.2 

(5.59) 
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Table 2: 0th-order polynomial effect: Anatomical locations, coordinates, and probabilities that activation maxima in Figure 3a reside within 

cytoarchitecturally defined auditory cortical areas. All peak t values are significant (p<0.05, corrected). All probability values are expressed as a 

percentage of the maximum probability value within each map. 

32 

Probability 

Morosan PAC Penhune Westbury 
Talairach Label 

(Brodmann Area) 

MNI 

xyz 

Talairach 

xyz 
Te1.0 Te1.1   Te1.2 HG PT

Peak t 
values 

L STG 

(41) 
–48 –16 +4 –47 –16 +5 12 0 0 70 0 11.03 

L STG 

(42) 
–62 –26 +8 –61 –25 +9 0 0 0 0 64 9.81 

R HG 

(22) 
+42 –24 +10 –42 –23 +10 0 13 0 55 8 8.49 

R STG 

(22) 
+51 –6 +0 –51 –6 +0 19 0 33 41 0 9.40 

L: left; R: right; STG: superior temporal gyrus; HG: Heschl’s gyrus; PT: planum temporale. 
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Table 3. 1st-order polynomial effect: Anatomical locations, coordinates, and probabilities that activation maxima in Figure 4a reside within 

specified auditory cortical areas.  All t values are significant (p<0.05, corrected). All probability values are expressed as a percentage of the 

maximum probability value within each map. 

Probability 

Morosan  Penhune Westbury
Talairach Label 

(Brodmann Area) 

MNI 

xyz 

Talairach 

Xyz 
Te1.0 Te1.1   Te1.2 HG PT

t 

 

L STG 

(22) 
–56 –8 +2 –55 –8 +2 0 0 50 23 5 6.10 

R STG 

(22) 
+56 –2 +4 +55 –2 +4 26 0 66 29 3 6.82 

L: left; R: right; STG: superior temporal gyrus; HG: Heschl’s gyrus; PT: planum temporale. 
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