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Abstract. Hidden Markov models (HMMs) are usually learned using
the expectation maximisation algorithm which is, unfortunately, subject
to local optima. Spectral learning for HMMs provides a unique, optimal
solution subject to availability of a sufficient amount of data. However,
with access to limited data, there is no means of estimating the accuracy
of the solution of a given model. In this paper, a new spectral evaluation
method has been proposed which can be used to assess whether the
algorithm is converging to a stable solution on a given dataset. The
proposed method is designed for real-life datasets where the true model is
not available. A number of empirical experiments on synthetic as well as
real datasets indicate that our criterion is an accurate proxy to measure
quality of models learned using spectral learning.

Keywords: Spectral learning, HMM, SVD, Evaluation technique.

1 Introduction

Learning parameters of dynamical systems and latent variable models using
spectral learning algorithms is fascinating because of their capability of globally
optimal parameter estimation. The inherent problem of local optima in many
existing local search methods, such as Expectation Maximisation (EM), Gradient
Descent, Gibbs Sampling, or Metropolis Hastings, led to the development of the
spectral learning algorithms which are based on the method of moments (MoM).
The goal of the MoM is to estimate the parameters, θ, of a probabilistic model,
p(x|θ), from training data, X = {xn} where n = 1 . . .N . The basic idea is
to compute several sample moments (empirical moments) of the model on the

training data, φi(X) = 1
N

∑N

n=1 fi(xn), and then to alter the parameters so
that the expected moments under the model, 〈fi(x)〉p(x|θ) =

∫
fi(x)p(x|θ)dx,

are identical with the empirical moments, that is φi(X) = 〈fi(x)〉p(x|θ). In short,
the method of moments involves equating empirical moments with theoretical
moments.

Hsu et al. [9] proposed an efficient and accurate MoM-based algorithm for
discrete Hidden Markov Models (HMMs) that provides a theoretical guarantee
for a unique and globally optimal parameter estimation. However, the algorithms
that are based on MoM require large amounts of data to equate empirical mo-
ments with the theoretical moments [7, 8].

In real-life experiments, the practitioners would like to know what are the
minimal data requirements that can guarantee that a particular model is learned
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near-optimally. When spectral learning does not have access to a sufficient
amount of data, the estimates may be far from the global optima, and in some
cases, the parameter estimates may lie outside the domain of the parameter
space [6, 15]. The practitioners are not able to judge how far their parameters
can be from the optimal solution of a given model when the true model is not
available, which is a normal scenario in practice. As a consequence, when the
empirical model learned using spectral learning does not perform well, the prac-
titioner does not know whether the solution is sub-optimal and the model is still
correct, or whether the model is simply wrong. In this paper, we design a new
method that can approximate the convergence of spectral learning.

The contribution of this work is that we provide a way to verify whether
a particular dataset is sufficient to train a HMM using spectral learning [9].
In the current big data era, the proposed criterion can also be deployed in a
system where there is possibility of more incoming data over time. In particular,
the proposed measure can comfortably be incorporated into the online spectral
learning algorithms, such as [2]. A number of authors have been dealing with the
other features of spectral leaning, such as low rank, scalability and insufficient
statistics; however, to the best of our knowledge, there is no work where the basis
vector rotation-based measure would be used as a proxy method to estimate the
convergence of spectral learning algorithms.

2 Background

A hidden Markov model (HMM) is a probabilistic system that models Markov
processes with unobserved (hidden) states. A discrete HMM can be defined as
follows: let (x1, x2, . . . ) be a sequence of discrete observations from a HMM where
xt ∈ {1, . . . , n} is the observation, and (h1, h2, . . . ) be a sequence of hidden states
where ht ∈ {1, . . . ,m} is the hidden state at time step t. The parameters of an
HMM are 〈π, T,O〉 where π ∈ R

m is the initial state distribution, T ∈ R
m×m is

the transition matrix, and O ∈ R
n×m is the observation matrix. T (i, j) = P (i|j)

is the probability of going to state i if the current state is j, π(j) is the probability
of starting in state j, and O(q, j) = P (q|j) is the probability of emitting symbol
q if the current state is j.

In general, the term ‘spectral’ refers to the use of eigenvalues, eigenvectors,
singular values and singular vectors. Singular values and singular vectors can be
obtained from the singular value decomposition (SVD) [1]. The SVD of a matrix
A is a factorisation of A into a product of three matrices A = UDV ⊤ where the
columns of U and V are orthonormal and the matrix D is diagonal with positive
real entries known as singular values. U and V are called left and right singular
vectors. The k dimensional subspace that best fits the data in A can be specified
by the top k left singular vectors in matrix U . The spectral algorithm for HMMs
uses the SVD to retrieve a tractable subspace where the hidden state dynamics
are preserved [9].

A convenient way to calculate the probability of a HMM sequence (x1, x2, . . . ,

xt) using the matrix operator [5, 10], Ax = Tdiag(Ox,1, . . . , Ox,m) for x =
1, . . . , n, is as follows:

Pr(x1, ..., xt) = 1⊤mAxt
...Ax1π. (2.1)



The spectral learning algorithm for HMMs learns a representation that is based
on this observable operator view of HMMs; this is an observable view because
every Ax represents state transitions for a given observation x. However, in this
case, the set of ‘characteristic events’ revealing a relationship between the hidden
states and observations have to be known or estimated from data that requires
the knowledge of the T and O matrices. For a real dataset, we don’t have exact T
and O matrices. To relax this requirement, Hsu et al. [9] has used a transformed
set of operators (in a tractable subspace) based on low order empirical moments
of the data. In practice, the following empirical moment matrices have to be
estimated from the data:

P1 ∈ R
n [P1]i = Pr(x1 = i) (2.2)

P2,1 ∈ R
n×n [P2,1]ij = Pr(x2 = i, x1 = j) (2.3)

P3,x,1 ∈ R
n×n [P3,x,1]ij = Pr(x3 = i, x2 = x, x1 = j). (2.4)

The resulting transformed operators for the HMM are then computed as follows:

b̂1 = Û⊤P̂1; b̂∞ = (P̂⊤
2,1Û)+P̂1; B̂x = Û⊤P̂3,x,1(Û

⊤P̂2,1)
+

∀x ∈ [n] (2.5)

where Û is computed by performing SVD on the correlation matrix P2,1. If T
and O in the underlying HMM are of rank m and π̂ > 0, then it can be shown
that

P̂ r(x1, . . . , xt) = b⊤∞Bxt
. . . Bx1b1 (2.6)

which means that using the parameters learned by the spectral learning algo-
rithm, a full joint probability of a sequence can be computed without knowing
the exact T and O matrices. In a real situation, one does not have the optimal
empirical moments and has to approximate the moment matrices, P̂1, P̂2,1 and

P̂3,x,1, from a finite amount of data and consequently to approximate the opera-

tors b̂1, b̂∞ and B̂x. Hsu et al. [9] has proved that the joint probability estimates
of a HMM sequence are consistent (i.e. they converge to the correct model) when
the number (N) of sampled observations tends to infinity:

lim
N→∞

∑

x1,...xt

|Pr(x1, ...xt)− P̂ r(x1, ...xt)| = 0.

3 Main Method

Based on our empirical observations, in this paper, we have proposed a conver-
gence criterion for a spectral learning algorithm for HMMs [9] with finite data.
Since the true convergence cannot be determined with certainty when the true
model is unavailable, our method is a proxy measure that approximates the dif-
ference from the true model. Technically speaking, here convergence means that
the minimal training data requirement is satisfied to yield empirical moments
that are sufficiently close to the real moments. Note that when the essential
amount of data is not available, the parameter estimates based on empirical mo-
ments may not even be in the domain of the parameter space (e.g. probabilities



can be negative [6,15]). Our observations lead to a straightforward methodology
that can approximate whether the algorithm has access to a sufficient amount of
data. Specifically, we apply the spectral learning algorithm on a number of sub-
sets of the training data where the size of the sub-sets is increased in subsequent
iterations and each subset contains data of the previous sub-set to observe the
effect of the increasing dataset. The spectral learning solution uses one of the or-
thonormal matrices, Û , as described in the previous section, to define a solution
to the overall learning problem. Our main method is based on an observation
that the bases contained in Û rotate when the algorithm is executed on different
sub-sets of the training data. By rotation, we mean the angle change between
any two subsequent basis vectors contained in corresponding Û . Note that every
sub-set defines one basis. The key point is that the magnitude of those rotations
diminishes when the size of the sub-set grows. In Section 5, experimental results
in (Fig. 2) confirm this claim, where the angle change differences become smaller
as the size of the training sub-sets becomes larger.

Therefore, our hypothesis is that the magnitude of those rotations (measured
as an angle change difference between two successive basis) can be a good proxy
to determine the convergence (or equivalently data sufficiency) of the spectral
learning algorithm. In order to justify our hypothesis, we show empirically on
synthetic data that the learned model is an accurate approximation of the true
model, when the angle that quantifies the magnitude of the rotations of the
successive bases is sufficiently small. In short, we show empirically that when
the rotation is small, the error is small as well. So, we can treat the rotation as
a proxy to quantify the error.

In our approach, the original one-shot spectral learning algorithm for HMMs
has been converted to a multi-step procedure for multiple training sub-sets de-
scribed above. When the basis rotation between two successive corresponding
basis vectors is less than a required value (e.g. 10−5), our empirical experiments
show that the spectral learning solution converges to a stable solution in the
parameter space. However, if the required rotation (angle change difference) be-
tween two corresponding bases is not achievable with the training data at hand,
then the spectral learning solution cannot be considered as reliable, and in that
case another suitable parameter estimation technique should be used for the
task. On convergence, the original spectral algorithm should be applied to the
whole dataset to compute the final parameters. The rotation (angle change dif-
ference) is calculated using the maximum value of the dot product between each
successive corresponding basis vectors in Û .

The next sections will show empirical evidence that smaller basis rotations
are correlated with the real error on data when the true model is known, and
therefore the magnitude of the basis rotation can be considered as a proxy that
can assess the quality of the learned parameters for a particular model.

4 Experimental Methodology

4.1 Evaluation

In order to seek empirical evidence to support our hypothesis, we need a notion
of an error function that can measure the quality of the HMM model learned



from data, and we want to show empirically that our proxy measure is correlated
with that error function. Then, we will conclude that our proxy method is a good
indicator of the quality of the learned model on real data where the true error
cannot be computed because the ground truth is not known.

Zhao and Poupart [15] used a normalized L1 error that uses the sum of tth

roots of absolute errors, where t is the length of test sequences and τ is the set
of all test sequences. This approach relies on the probability of seeing a certain
sequence of outputs, Pr(x1, . . . , xt).

L1 =
∑

(x1,...,xt)∈τ

|Pr(x1, ..., xt)− P̂ r(x1, ..., xt)|
1
t . (4.1)

The error bounds for spectral learning in HMMs were derived in Hsu et al. [9,
Sec. 4.2.3] for a similar measure. Moreover, unlike other approaches, such as
Kullback-Leibler divergence [14], this method does not use a logarithm in its
computation, and is robust against negative probabilities.

Spectral learning for HMMs [9] uses the transformed operators and Eq. 2.6 to
calculate joint probabilities. Certainly, when one knows the exact model (which
is true in the case of synthetic HMMs), the exact probability Pr(x1, ..., xt) can
be calculated using Eq. 2.1, which either involves multiplication of the exact
transition, T , and emission matrices, O, or combined matrices, Ax. Calculating
the error by comparing such exact measures reveals how close the estimated
model is to the exact model. The normalized L1 error serves this purpose with-
out using the exact T and O because, as shown in [15], it uses probabilities of
sequences and handles negative values. As a result, this leads to a measure that
can indicate whether a model is well-fitted or not. We use this error to show
that the angle change difference can indicate that the model is well-fitted. For a
model to be well-fitted, in the spectral algorithms, the empirical moments have
to be sufficient. In that sense, the angle change difference can also be a valid
indication of the sufficiency of empirical moments.

4.2 Experimental Settings

The performance of HMM learning algorithms, in general, depends on the linear
independence of the rows of (T and O) for a maximum discrimination of the
state and observation symbols. However, as T and O are inextricably linked to
the model execution, [3] defined Inverse Condition Number (ICN) for indicating
the linear independence of T and O. ICN was calculated as a ratio between the
smallest and largest singular value of a row augmented matrix of T and O. A row
augmented matrix is a matrix obtained by appending the columns of two given
matrices. Such ICN was also demonstrated in [4] with Local Search method (LM)
based parameter estimation techniques for HMMs. If ICN is close to 1 then the
HMM is well-conditioned; if the ICN is close to 0 then HMM is ill-conditioned.
While experimenting with the synthetic HMM systems, ICN was used to verify
how our proposed convergence measure works with ill-conditioned HMMs.

The proposed convergence measure was tested on both synthetic datasets
and on one real dataset. The normalised L1 error can be computed on synthetic
data only since the true model is required. The synthetic datasets are the HMM



Table 1: Description of Benchmark and some random HMMs (here Ex. or ex.
are abbreviation of the word Example. Ex. are used in our analysis and plots)

HMM Reference ICN HMM Reference ICN

Ex.1(m=2, n= 3) [11, p. 26 ex. 1] 0.5731 Ex.2(m=2, n= 6) [11, p. 40 ex. 2] 0.7338

Ex.3(m=2, n= 2) [12, p. 79 ex. 1] 0.5881 Ex.4(m=2, n= 10) Random 0.6756

Ex.5(m=3, n= 8) [11, p. 26 ex. 3] 0.6158 Ex.6(m=3, n= 3) Random 0.6101

Ex.7(m=3, n= 10) [11, p. 26 ex. 4] 0.6219 Ex.8(m=3, n= 3) [12, p. 80 ex. 4] 0.2070

Ex.9(m=3, n= 3) [12, p. 80 ex. 5] 0.3305 Ex.10(m=3, n= 3) [12, p. 81 ex. 6] 0.4612

Ex.11(m=3, n= 3) [12, p. 81 ex. 7] 0.3678 Ex.12(m=3, n= 3) [12, p. 79 ex. 2] 0.3715

Ex.13(m=3, n= 10) Random 0.6355 Ex.14(m=3, n= 12) Random 0.6528

Ex.15(m=3, n= 20) Random 0.5475 Ex.16(m=2, n= 2) Random 0.9800

Ex.17(m=2, n= 2) Random 0.1800 Ex.18(m=2, n= 2) Random 0.0200

benchmarks used in [11–13]. All benchmark HMMs are summarised in the Tab 1
where HMM column has the number of states (m) and the number of possible
observations (n) used in the experiment, the Reference column has the source
of O and T matrices, and the ICN column has the value of the ICN for the
corresponding HMM. In our analysis, we have also used additional random HMM
systems generated by rejection sampling method to obtain different ICN values.

The observation triples for training [9] were generated by sampling from
the corresponding HMMs. The real dataset was arranged into triples using a
sliding window approach. This dataset is based on web-navigation data from
msnbc.com1 and consists of 989818 time-series sequences and 17 observable sym-
bols. The testing data to compute the L1 error for every synthetic HMM consists
of 20000 observation sequences of length 50.

To show that the basis vector angle change difference can be a good indication
of the sufficiency of the empirical moments, each HMM was trained incrementally
(with subsets of training data) for different required maximum angle change
difference (θ), and for each case the normalised L1 error was calculated. In all
our experiments, we added 20 additional training examples in each subsequent
sub-set. Our goal is to show that, when maximum requirement for angle change
difference is smaller, L1 is also smaller on well-conditioned HMMs. The chosen θ

were 30, 10, 5, 2, 1, 0.5, 0.1, 0.01, 0.001, 0.0001, and 0.00001 degrees. To visualise
and validate the convergence on smaller θs, the T and O matrices were recovered
from spectral parameters using Appendix C of [9]. The next section will show
the quality of those matrices as a function the ICN and the required maximum
angle change difference.

5 Experimental Results

The L1 error was calculated for different θ values for each benchmark HMM
system as described in the previous section. When θ is large (30, 10, 5, 2, 1,
0.5, 0.1, 0.01), the spectral learning solution of joint probability generates many
negative probabilities for test sequences and the error pattern is thus inconclu-
sive. As a negative probability for a sequence makes L1 larger, for large θs, small
spikes can be seen in Fig. 1b. However, for well-conditioned HMMs, the error

1 https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
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(a) Ill-condtioned (ICN < 0.4)
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(b) Well-conditioned (ICN ≥ 0.4)

Fig. 1: L1 error with chosen θs for different example HMMs

reduces when the θ becomes smaller (0.001, 0.0001, and 0.00001 in Fig. 1b). This
indicates that a smaller θ implies a well-fitted model. In a practical application
where the exact model is not known, our angle change measure can inform a
practitioner about the quality of the current parameters for her model. For the
same experiment, the basis vector angle change difference for different θ were
plotted in (Fig. 2). To achieve a larger θ, a small training dataset is sufficient.
However, to achieve a small θ, comparatively larger training data is required.
Thus, the angle change difference is correlated with training data requirements
as well as the L1 measure of correctness. A similar result of the angle change
difference for different θ was found on all other synthetic HMMs systems and on
a real dataset.

The actual number of hidden states is usually not known for a real dataset.
The angle change difference for different numbers of hidden states (m) (Fig. 3)
shows that more hidden states leads to a higher model complexity (i.e. higher
m) and as a result more training data is required to achieve the same θ, 0.001.
For instance, to achieve θ = 0.001 with the number of hidden states m = 8,
20 × 4 × 104 training examples are required, whereas to achieve the same θ

with m = 4, 20 × 104 training examples are sufficient. Here, 20 is the number
of training examples (observations) added to each subsequent training sub-set.
Thus, the angle change difference is also correlated with model complexity.

L1 is not possible to calculate for the real dataset because of the absence of
the ground truth as the exact model for real dataset is not known. This is true
for all real datasets in general. However, the angle change based criterion can be
used with ease to determine the sufficiency of the training data (consequently,
empirical moments), and therefore the fitness of the model for real data. There-
fore, by using angle change difference as a measure of convergence, it is possible
to determine the required training data for sufficient empirical moments based
on model complexity, m. From the empirical evidence, we observed that the θ

value of 10−5 gives satisfactory result in most cases. However, by taking smaller
θ, we would be more confident about the solution.

In our experiments, the T and O matrices were extracted to visualize the con-
vergence. It was also observed that when the angle change is small, the recovered



Table 2: Recovered T and O matrices for a well-conditioned HMM (ICN ≥
0.4) with different θs. (See that smaller θ retrieves T and O closer to the true
parameters)

θ = 5 θ = 2 θ = 0.01

T =

[

1.6486 −0.5497
0.3941 0.5716

]

T =

[

0.9695 + 0.4851i 1.5889 − 0.0733i
0.2789 − 0.8469i −0.7950 − 0.5653i

]

T =

[

0.7074 0.8103
0.1287 −0.0615

]

O =

[

0.5590 0.1565
0.1537 0.3937
0.2541 0.4830

]

O =

[

0.3430 + 0.1563i 0.3430 − 0.1563i
0.5470 + 0.0000i 0.2667 + 0.0000i
0.2502 + 0.0860i 0.2502 − 0.0860i

]

O =

[

0.5332 0.1293
0.5322 0.1239
0.2178 0.4636

]

θ = 0.0001 θ = 0.00001 True Parameter

T =

[

0.9336 0.3400
0.0628 0.6582

]

T =

[

0.8874 0.3503
0.1106 0.6330

]

T =

[

0.9000 0.3000
0.1000 0.7000

]

O =

[

0.2873 0.9300
0.4739 0.0198
0.2391 0.0499

]

O =

[

0.2435 0.8298
0.5080 0.1066
0.2476 0.0646

]

O =

[

0.2500 0.8000
0.5000 0.1000
0.2500 0.1000

]
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Fig. 2: Synthetic data (Ex. 1)
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Fig. 3: Real data (θ = 0.001)

T and O matrices are in the parameter space and they are close to the exact
model (Tab. 2). This is another confirmation that leads to a conclusion that the
model fitness or empirical moment sufficiency for a well-conditioned HMM can
be determined using a certain small angle change difference as a convergence
criterion.

On well-conditioned HMMs, when the empirical moments are sufficient, the
L1 error is reduced monotonously (e.g for a particular HMM, L1 gets smaller
when the θ becomes smaller (Fig. 1b). This is not the case on ill-conditioned
HMMs (Fig. 1a) because of the ICN uncertainty existing in the observable space.
If a HMM is ill-conditioned (i.e. if ICN is close to 0 or ICN < 0.4), L1 is not
correlated in the same way with angle change difference, and it does not lead
to conclusive results. For example, in Fig. 4a, for a HMM with ICN = 0.2,
the L1 error is lower for θ = 0.1 whereas the error is higher for θ = 0.0001.
This is a feature of a particular HMM, and not a problem with the parameter
estimation techniques, because ill-conditioned HMMs are almost impossible to
learn even with substantial amount of data at hand (Tab. 3). Therefore, for ill-
conditioned HMMs, the angle change difference is not a proxy for model fitness.
This is due to the ambiguity and the uncertainty feature of HMMs [3]. However,
on well-conditioned HMMs with ICN ≥ 0.4, the L1 is monotonously consistent
(Fig. 4a), and shows that the model is fitted well. In Fig. 4b, the non-monotonous



Table 3: Recovered T and O matrices for an ill-conditioned HMM (ICN
≤ 0.2) with the required maximum angle change difference θ = 0.00001

True System Estimated System True System Estimated System

T =

[

0.51 0.49
0.49 0.51

]

T =

[

1.0372 1.3084
−0.0372 −0.3084

]

T =

[

0.50 0.10 0.20
0.20 0.60 0.40
0.30 0.30 0.40

]

T =

[

0.9793 −0.5696 3.5463
−0.3589 2.2337 −4.6428
0.2551 −0.4065 1.3400

]

O =

[

0.49 0.51
0.51 0.49

]

O =

[

0.4899 0.0979
0.5101 0.9121

]

O =

[

0.20 0.40 0.70
0.70 0.40 0.10
0.10 0.20 0.20

]

O =

[

0.2686 0.5274 1.0800
0.5980 0.2478 0.0552
0.2275 0.1330 −0.1376

]
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(b) Under-trained model due to large θ

Fig. 4: Angle change difference and model error

L1 corresponds to a model that was not trained enough, and the angle change
difference is large. That means a smaller θ will result in convergence when the
error will follow the monotonous trend. If the error is not monotonous even
with small θ then its means the HMM is ill-conditioned. In that case, HMM
will not be able to model the data. Our empirical experiments confirm that the
angle change difference is a useful proxy for sufficient empirical moments and
consequently model fitness for well-conditioned HMMs.

6 Conclusion

In this paper, we have proposed a basis vector angle change based convergence
criterion for spectral learning that is known to require large amounts of data.
These algorithms usually work in one-shot and on real data there is no indication
for the practitioner about the convergence. As a result, it is likely that a prac-
titioner will end up using an under-trained model. We showed how a one-shot
algorithm can be trained several times for several sub-sets of the available train-
ing data of a growing size. The advantage is that in this way one can approximate
the convergence of the algorithm to check whether the dataset provides sufficient
empirical moments that allow the algorithm to produce parameters that lead to
a small error. We demonstrated our method on spectral learning for HMMs and
showed empirically that our claims are justified in that case. We have tested
our proposed method on synthetic and real data and showed empirically that
our method can indicate sufficiency of the empirical moments. As a result, the



practitioners can check whether they need more data or whether they need a
different model if the predictive power of their solution is not satisfactory.

For the sake of computational efficiency, one could apply our method in con-
junction with an online algorithm [2] which relies on incremental SVD. However,
in this study, our goal was to investigate the convergence of spectral learning
and, thus, using standard, non-incremental SVD had better methodological jus-
tification.

We know that, in theory [9], spectral learning for HMMs will converge to an
optimal solution given a sufficient amount of data. In the face of our results,
it would be interesting to compare spectral learning with local search methods,
such as EM, for different magnitudes of the angle change.

References

1. Baker, K.: Singular value decomposition tutorial. Ohio State University (2005)
2. Boots, B., Gordon, G.: An online spectral learning algorithm for partially observ-

able nonlinear dynamical systems. In: Proc. of AAAI (2011)
3. Caelli, T., McCane, B.: Components analysis of hidden markov models in computer

vision. In: Image Analysis and Processing, 2003.Proceedings. 12th International
Conference on. pp. 510–515 (Sept 2003)

4. Davis, R.I.A., Lovell, B.C.: Comparing and evaluating hmm ensemble training
algorithms using train and test and condition number criteria. Pattern Anal. Appl.
6(4), 327–336 (Feb 2003)

5. Even-Dar, E., Kakade, S.M., Mansour, Y.: The value of observation for monitoring
dynamic systems. In: IJCAI. pp. 2474–2479 (2007)

6. Glaude, H., Enderli, C., Pietquin, O.: Spectral learning with proper probabilities
for finite state automaton. In: Proc. of ASRU. IEEE (2015)

7. Hall, A.R., et al.: Generalized method of moments. Oxford University Press (2005)
8. Hansen, L.P.: Large sample properties of generalized method of moments estima-

tors. Econometrica: Journal of the Econometric Society pp. 1029–1054 (1982)
9. Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden markov

models. Journal of Computer and System Sciences 78(5), 1460–1480 (2012)
10. Jaeger, H.: Observable operator models for discrete stochastic time series. Neural

Comput. 12(6), 1371–1398 (Jun 2000)
11. Mattfeld, C.: Implementing spectral methods for hidden markov models with real-

valued emissions. CoRR abs/1404.7472 (2014), http://arxiv.org/abs/1404.7472
12. Mattila, R.: On Identification of Hidden Markov Models Using Spectral and Non-

Negative Matrix Factorization Methods. Master’s thesis, KTH Royal Institute of
Technology (2015)

13. Mattila, R., Rojas, C.R., Wahlberg, B.: Evaluation of Spectral Learn-
ing for the Identification of Hidden Markov Models (Jul 2015),
http://arxiv.org/abs/1507.06346

14. Vanluyten, B., Willems, J.C., Moor, B.D.: Structured nonnegative matrix fac-
torization with applications to hidden markov realization and clustering. Linear
Algebra and its Applications 429(7), 1409 – 1424 (2008)

15. Zhao, H., Poupart, P.: A sober look at spectral learning. CoRR abs/1406.4631
(2014), http://arxiv.org/abs/1406.4631

http://arxiv.org/abs/1404.7472
http://arxiv.org/abs/1507.06346
http://arxiv.org/abs/1406.4631

	Estimating the Accuracy of Spectral Learning for HMMs

