65 research outputs found

    Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    Get PDF
    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals

    Absorptive capacity and innovation: When is it better to cooperate?

    Full text link
    Cooperation can benefit and hurt firms at the same time. An important question then is: when is it better to cooperate? And, once the decision to cooperate is made, how can an appropriate partner be selected? In this paper we present a model of inter-firm cooperation driven by cognitive distance, appropriability conditions and external knowledge. Absorptive capacity of firms develops as an outcome of the interaction between absorptive R&D and cognitive distance from voluntary and involuntary knowledge spillovers. Thus, we offer a revision of the original model by Cohen and Levinthal (Econ J 99(397):569-596, 1989), accounting for recent empirical findings and explicitly modeling absorptive capacity within the framework of interactive learning. We apply that to the analysis of firms' cooperation and R&D investment preferences. The results show that cognitive distance and appropriability conditions between a firm and its cooperation partner have an ambiguous effect on the profit generated by the firm. Thus, a firm chooses to cooperate and selects a partner conditional on the investments in absorptive capacity it is willing to make to solve the understandability/novelty trade-off. © 2014 Springer-Verlag Berlin Heidelberg

    Entry Mode Degree of Control, Firm Performance and Host Country Institutional Development: A Meta-Analysis

    Get PDF
    Among studies on performance outcomes of entry mode choices disagreement fueled by ambiguous research findings is apparent as regards whether the best per- formers are those firms that enter foreign countries with high or low entry mode degree of control. To solve this dilemma and test new hypotheses, the relationship between entry mode degree of control and firm performance is examined by meta- analyzing 133 studies (740,114 observations) covering entry mode choices from 1980 to 2010. We find that (a) overall high-control entry modes lead to higher per- formance, and (b) adopting high-control entry modes is particularly important for firms entering developing countries

    Archaea on human skin

    Get PDF
    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin
    corecore