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Abstract

Cystic fibrosis (CF) is a genetic disease in which bacterial infections of the airways play a major role in the long-term
clinical outcome. In recent years, a number of next-generation sequencing (NGS)-based studies aimed at
deciphering the structure and composition of the airways’ microbiota. It was shown that the nasal cavity of CF
patients displays dysbiosis early in life indicating a failure in the first establishment of a healthy microbiota. In
contrast, within the conducting and lower airways, the establishment occurs normally first, but is sensitive to future
dysbiosis including chronic infections with classical pathogens in later life. The objective of this mini-review is to
give an update on the current knowledge about the development of the microbiota in the early life of CF patients.
Microbial acquisition in the human airways can be described by the island model: Microbes found in the lower
airways of CF patients represent “islands” that are at first populated from the upper airways reflecting the
“mainland.” Colonization can be modeled following the neutral theory in which the most abundant bacteria in the
mainland are also frequently found in the lower airways initially. At later times, however, the colonization process of
the lower airways segregates by active selection of specific microbes. Future research should focus on those
processes of microbial and host interactions to understand how microbial communities are shaped on short- and
long-term scales. We point out what therapeutic consequences arise from the microbiome data obtained within
ecological framework models.
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Introduction
Cystic fibrosis (CF) is a life-limiting autosomal recessive
disorder. The cause of the disorder is a genetic mutation
targeting the cystic fibrosis transmembrane conductance
regulator (CFTR) gene. The most common mutation is
Phe508Del (F508Del) but other mutations also modify
the production or function of this ion channel [1]. The
defect in the regulation of ion transport homeostasis in
epithelial cells leads to a malfunction of many organs in-
cluding the pancreas, the liver, the intestine, and mostly
the lungs. In the airways, the genetic defect impairs
mucociliary clearance as well as antimicrobial defense
creating a perfect niche for microbial colonization. In

turn, microbial infections, encompassing viruses, fungi,
and bacteria, contribute to the elevated mortality rate in
CF patients. Chronic infections by bacterial pathogens
trigger airway inflammation and structural lung damage,
beginning in the early life and influencing the later stage
of the disease [2]. From the clinical viewpoint, improved
antibiotic strategies help to increase life expectancy of
CF patients [1].
For decades, microbiology of CF airways was studied

by culture-based methods resulting in the main concept
that infections in CF were mostly mono-specific. The
prevalence of the different causative pathogens seemed
to be age stratified with Haemophilus influenzae or
Staphylococcus aureus being considered as pathogenic
agents in the early life and Pseudomonas aeruginosa or
Burkholderia cepacia complex (Bcc) being the major op-
portunistic pathogens during adulthood [3]. However, P.
aeruginosa was also observed early in the life of the
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patients [4]. Cultured-based methods also detected
species initially classified as “atypical pathogens,”
mainly gram-negative bacilli, including Stenotropho-
monas maltophilia and Achromobacter xylosoxidans
as well as non-tuberculous mycobacteria, anaerobes
and fungi. While more and more studies emerge on
those pathogen, their influence on CF progression is
unclear and the previously clear picture of CF mono-
infections is obscured [5–8].
With technological advances in molecular biology, the

microbiological view of CF shifted towards a poly-
microbial concept when next-generation sequencing un-
raveled a high diversity of organisms living in the lower
airways even in healthy persons thus contrasting the pre-
vailing idea of a sterile lung environment [9–14]. Now-
adays, it is accepted that a true microbiota in the lower
airway exists and is composed to considerable parts of
anaerobic bacteria [15–17]. The objective of this review
will be to introduce ecological models of microbiota ac-
quisition in the lung, give a short overview on the
microbiota in the three most common sampling sites
(nose, throat, and lung), and discuss the new hypothesis
of a gut-lung axis connections in the early life of CF
patients.

Review
Island model and neutral theory as ecological framework
of CF microbiota development
The ecological context of infections is often
neglected; yet to understand the establishment of in-
fections the origin of pathogens has to be considered.
Airways have been described within the conceptual
framework of the island model where the microbiota-
rich upper airways are the mainland serving as source
for migrants that will colonize the microbiota-free or
microbiota-poor lower airways [15, 18, 19]. Descrip-
tion of the lower airways as islands also indicates that
different regions might undergo differential migration
or selection. In CF, as well as in healthy patients,
studies analyzing simultaneously the different com-
partments of the airways showed that the throat
microbiota and most likely the oral cavity is the main
source of migrants colonizing the lower airways
through a route of micro-aspiration [10, 14, 20]. For
the evolutionary process involved, it was shown that
the neutral theory applies fairly well in healthy people
as most of the bacteria in the lungs can be predicted
based on a neutral model with upper airways as a
source of origin [21–23]: The more abundant bacteria
in the original niche will have more chances to
colonize the lower airways because the balance be-
tween immigration and elimination is more decisive
than regional growth selection.

Nasal dysbiosis occurs early in life
The nasal cavity is the first filter of inhaled air which
contains particulate matter and microorganisms. Small
particles as well as bacteria are trapped in the mucus
layer covering the nasal mucosa in the nose [24]. In
healthy people the nose is known to carry commensal
microbiota but also opportunistic pathogens like S. aur-
eus. Roughly, a quarter of the healthy population is car-
rying S. aureus at any given time [25]. As S. aureus is
one of the important pathogens in CF in the early life,
studies aimed to evaluate the establishment of the nasal
microbiota in CF and how this microbiota relates to the
lower airways.
In the first months of life, a diverse bacterial commu-

nity establishes in the nasal cavity. Diversity decreases
during the first year but total amount of bacteria in-
creases. This correlates with an increase in the relative
abundance of Moraxellaceae, Corynebacteriaceae, and
Pasteurellaceae in healthy people. Dominance (highest
relative abundance) of those bacteria goes along with a
decrease in Staphylococcaceae [26]. In healthy babies, it
was shown by Biesbroek et al. that a high prevalence of
Moraxella, Corynebacterium, and Dolosigranulum in the
first year of life is associated with a more stable nasal
microbiome and lower rates of respiratory infections in
the consecutive periods of life [27]. This study also ele-
gantly showed that despite differences in the compos-
ition of the nasal microbiota during the initial, very first
colonization, the majority of the population finally con-
verts to a Moraxella-dominated microbiota even when
Staphylococcus was the primary colonizer. This observa-
tion indicates the first colonization is a stochastic
process, depending on differences in the environment,
yet intrinsic factors lead to convergence to a “healthy”
nasal microbiome. In healthy adults, each person
showed a unique stable microbial fingerprint but it was
shown that discrete microbial types can be distinguished
based on their dominant genus: Propionibacterium, Mor-
axella, Corynebacterium, or Staphylococcus [28, 29].
Those findings also demonstrate that in the majority of
cases, in a healthy environment, Staphylococcus is not
able to outcompete other commensals and normally
does not become the dominant species.
In CF, two studies compared control to CF children in

the first year of their life [26, 30]. Both studies observed
a clear difference in the structure of the microbial com-
munity between CF patients and healthy controls: This
shift was characterized by a decrease in Moraxella, Hae-
mophilus, and Corynebacterium in CF patients, nega-
tively correlated in the both studies with an increase in
S. aureus abundance. Interestingly, no change in the di-
versity (richness and evenness of the species) of the
nasal microbiota was observed when compared to
healthy controls indicating that the higher abundance of
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S. aureus did not impact strongly the richness of the
community.
Based on those studies, we hypothesize that the diver-

gence between CF and healthy is not based primarily on
microbial competition or microbes-microbes interaction.
The divergence is most likely explained by the altered
microenvironment in the nasal cavity as the CFTR mu-
tations leads to a modified mucus composition and
structure as well as defective immune response. The
mucus blanket apparently favors the colonization by Sta-
phylococcaceae and especially S. aureus while decreasing
the capabilities for growing of normal, perhaps even
beneficial commensals. In turn, it should be important
to study in more detail the mechanisms by which the al-
tered microenvironment shapes a different selection of
the early-life nasal microbiome in CF patients.

Seed bacteria from the nose?
Hypothesizing that nasal cavities might be a reservoir
for lower airways pathogen [31–33], a dysbiosis in this
niche can lead to an increase of colonization by oppor-
tunistic pathogens in the lower airways and might ex-
plain why S. aureus is one of the major pathogens in the
early life of CF. Increased carriage of S. aureus in the
nose might increase the chance for a first infection by S.
aureus in lower airways if the ecological theory of island
biogeography applies. Increased frequency of S. aureus
(or other bacteria) in the nasal niche (“mainland”) will
increase the probability of colonizing the lower airways
(“islands”). In turn, early-life experience with facultative
pathogens could prime the airways for secondary infec-
tions (e.g., by P. aeruginosa in the later course of the dis-
ease), perhaps by initiating and manipulating host
immune reactions [31, 34–36]. Indeed, long-term
changes in innate immune reactivities (“inducible innate
immunity”, priming) have been shown to occur in the
airways. Increased, repetitive stimulation by an altered
nasal microbiota might modulate the susceptibility of
lower airways towards secondary infections. It was also
demonstrated that some strains found in the nose were
also found in a newly transplanted lung in CF [37] argu-
ing for communication between these niches. An altered
nose microbiota could also have a distal effect by produ-
cing metabolites that may be transported to the lower
airways [38–41]. Many studies have shown that S. aureus
can enhance the growth and virulence of P. aeruginosa,
and therefore, it can be hypothesized that S. aureus from
the nasal cavity or from first lung infection will help P.
aeruginosa to install [42–48]. In the same line, other
nasal microbiota might exert secondary or long-term ef-
fects that modulate the lower airways’ microbiome.
Interestingly, a small part of the children with CF had

a “healthy” Moraxella-dominated microbiome in the
nose [10, 30]. It will be interesting to study whether this

subgroup shows better stability of the nasal microbiome
and has a better long-term clinical outcome.

The oral cavity and the throat drive early lower airways’
microbiota
As the mucus blanket is transported through the nasal
passage towards the oropharynx, it was hypothesized
that oropharyngeal and nose microbiota could share
similarities. However, studies in healthy as well as in CF
patients showed that nasal microbiota are quite diver-
gent from the throat microbiota [10, 20]. Definitively,
the throat microbiota is more influenced by the rich, di-
verse, and very dense oral microbiome [49].
During the first 2 years of life, the diversity of the

throat microbiota increases in the same timeline as the
gut microbiome is establishing [14]. However, from
2 years on, richness and diversity then seem to be in-
versely correlated with age in CF indicating an instable
state of the microbiome that can be correlated with the
increase of the severity of the disease as well as the accu-
mulative effects of antibiotics [3, 50]. The throat micro-
biota in CF is dominated by few genera including
Streptococcus, Veillonella, and Prevotella which are also
dominant genera in healthy adults [10, 14, 20, 49]. Un-
fortunately, to our knowledge, no studies so far tried to
directly compare throat swabs or oropharyngeal samples
between CF and healthy patients, especially not in young
children. However, based on descriptive publications in
both individual adult cohorts, it can be assumed that no
major changes exist between the two cohorts in the early
stage as they both exhibit a microbiota dominated by the
same genera in adulthood.
One of the most dominant genera in the throat is

Streptococcus (yet limitations in next-generation sequen-
cing (NGS) do not necessarily allow differentiation to a
precise species) and it has been shown that some
Streptococci like Streptococcus salivarius can inhibit the
growth of gram-negative bacteria [51]. Thus, microbe-
microbe interactions might be an important ecological
mechanism in this niche. Suppressive actions of some
dominant species might explain why later on, in CF pa-
tients suffering from lower airways infection with P. aer-
uginosa or other gram-negative pathogens, these specific
pathogens are found only at low abundance in the
throat. A recent study from Whiley et al. showed that
the relationship between Streptococci and P. aeruginosa
was highly dependent on the sequence of colonization
and the environmental factors: Streptococcus could in-
hibit P. aeruginosa only when it was the first colonizer
[52]. During the first months of life, in CF patients,
Streptococcus establishes as a dominant species [14] in
the throat and therefore probably regulates the chances
of infection by gram-negative bacteria in the throat. It is
still unknown whether such a postulated protective
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effect occurs in CF patients but it is certain that it does
not extend to the lower airways as gram-negative patho-
gens highly dominate the lung microbiome during the
later stage of the disease [1]. Microbial interactions
within the specific niche of the throat might result in a
quite stable microbiota that is more influenced by the
oral cavity and less prone to alterations even in CF
patients.

The lung microbiota: a dedicated balance of migration
and elimination
The presence of a true commensal microbiota establish-
ing in the lower airways is still a matter of debate espe-
cially because lung microbiota resembles more a
transient colonization from the upper airways than a
true stable growth of commensals [15]. Many studies
using NGS showed that the throat microbiota is closely
related to the lung microbiota, the latter sampled by
bronchoalveolar lavage (BAL) or expectorated sputum in
healthy and CF patients [10, 20, 53]. Proximity and
interconnection of both compartments argues for
micro-aspiration as the main process leading to bacterial
immigration from the upper to the lower airways. As a
consequence, the first microbiota acquired in early life
probably originates from migrants from the throat
microbiota that are able to colonize and reproduce in

the lower airways [10, 18–20, 54] (Fig. 1). Indeed, it was
shown that in young children with CF, the lower airways’
microbiota resembled the one in the throat and this also
holds true for adults unless chronic infections with spe-
cific pathogens (e.g., P. aeruginosa, Burkholderia) are es-
tablishing [10]. Work of our own also shows that
repeated sputum samples of CF patients are not overly
stable when analyzed at the individual genus distribu-
tion, yet the overall composition matched well a corre-
sponding throat sample. Data argue for repeated cycles
of microaspiration and removal of bacteria in the lower
airways of the CF patients in early life with the throat
being the source.
As a proof of concept, in less severe disease, no

classical pathogens are observed by NGS or by cul-
ture and the same genera are dominating the lower
airways’ microbiome and the oropharyngeal commu-
nity. Streptococcus, Prevotella, Veillonella, and Neis-
seria are the most common and abundant genera in
the lower airways in young CF patients as well as in
healthy people [17, 20, 22, 53, 55]. A high intra-
individual variation in the structure of the microbiome
was highlighted in different studies, mostly because the
lung is a heterogeneous niche and does not possess a
homogeneous microbiome [56–59]. Individual patients
exhibited a personalized microbiome in the lower airways.

Fig. 1 Theoretical acquisition and evolution of the microbiome in CF airways. In the early stage of CF, migration of bacteria from the nose and
throat (considered as the mainland) will seed the lower airways. The lung microbiome in the early phase of CF resembles the one from the
throat. Thus, migration, growth, and elimination of the microbiota with the throat as main source also initially is balanced as observed in healthy
people. With aging, changes in the regional conditions (mucus, nutrients, pH, clearance, and immunity) lead to an unbalance in the equilibrium
between migration and elimination thus favoring regional growth in the lower airways of typical or atypical CF pathogens. This overgrowth
probably is not linked to major changes in the source niches (nose and throat), yet pathogens may originate from there. Microenvironment
changes trigger the segregation of the lung’s microbiome from the throat’s microbiome creating a third independent microbiome in the airways
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Confirming these results, sections of lungs taken during
transplantation possessed a unique microbiome in CF dis-
ease [56, 57]. This spatial heterogeneity slightly contrasts
results obtained in healthy patients who show a quite
good homogeneity in the different lobes of the lungs. This
is probably because the microbiome in the healthy lung is
the result of microbial immigration and elimination while
in diseased patients, effects of local growth might be more
determinant [19]. Renwick et al. also showed that, despite
a close relationship regarding the dominant taxa, BAL
microbiota from young CF patients had significant differ-
ences from healthy controls [60]. Those differences be-
tween healthy and CF subjects mostly rely on the global
diversity which decreases in CF. The results argue for the
development of an early dysbiosis in young CF patients
that starts from colonization from upper airways but then
gets independent and develops separately (Fig. 1).
The contrasting results between the studies using

transplanted lungs [56, 57] and BAL/sputum [10, 60] in
CF compared to throat microbiota might be explained
by the status of the disease. CF lungs from very young
patients exhibit an overlapping microbiome to the
throat. However, in advanced stage disease, when a
pathogen overgrows, the throat microbiota is not a good
surrogate anymore of the lower airways [10, 20]. Some
studies observed that throat microbiota did not reflect
the microbiota of the lower airways in some CF patients
[10, 56, 61]. All those studies were analyzing patients
with chronic infections in the lower airways showing a
high dominance of known classical pathogens. These re-
sults indicate that chronic infections are an important
trigger in the shift in the microbiome of the lower air-
ways. Mostly, known pathogens like P. aeruginosa, S.
aureus, Bordetella, Haemophilus, and Burkholderia
reach a high dominance through different modes of se-
lection and high dominance is mostly found only in an
adult or aged cohort. The same pattern is likely to occur
with the emerging atypical CF pathogens like S. malto-
philia and A. xylosoxidans, non-tuberculous mycobac-
teria, and fungi [5]. High dominance of one species
correlates with a decrease in diversity, anaerobe load,
and lung function [10, 55, 62].
It can thus be hypothesized that the neutral model

holds true only at the beginning of airway colonization
in CF (Fig. 1): The more abundant genera in the throat
are the more frequent colonizers in the lower airways. In
contrast to healthy people, in later stage CF with pro-
gressing disease, microbial communities are clearly
under selection. The balance between migration and
elimination is disturbed and/or regional growth selection
processes overwhelm the fine-tuned balance. Only then,
some pathogens adapt and grow in the lower airways as
evidenced by their higher abundancy in the lower air-
ways as compared to the source (nose or throat) [21].

This change represents a segregated individual develop-
ment that probably depends more on microenvironmen-
tal factors than on the bacteria themselves because the
spectrum of invading migrants is not overly different. In
turn, it must be concluded that the local environment
factors (pH, nutrient and mucus composition, clearance
processes, and immunity) differ. It might also be that
those differences not directly select for growth of patho-
gens but affect the interplay in the immigrating commu-
nity (e.g., anaerobes-pathogen interactions), thus
favoring outgrowth of certain bacteria and reducing the
diversity of colonizers.

Decreasing microbial diversity in later stage CF disease
The primary microbial colonization seems to be un-
changed in CF as migrants come from a similar pool of
species: overlap with throat community, for which minor
differences between healthy and diseased patients exist,
is observed. However, microbial clearance and regional
growth are undoubtly changed by the CFTR mutation it-
self. Deficiency in mucociliary clearance and immune re-
sponse will modify the capacity to manage the bacterial
load in the lower airways while the modification of the
mucus composition itself will alter growth conditions.
Mucus in healthy people is a thin layer of low-nutrient
environment which is highly dynamic while in CF, the
mucus layer is thicker with global changes in osmolarity,
oxygen concentration, and decreased mobility [63].
Those differences could in theory favor a different
microbiome establishment, possibly allowing the domin-
ance of fewer bacteria (P. aeruginosa, H. influenzae, S.
aureus, Burkholderia cepacia complex), thus explaining
the decrease in diversity observed in CF compared to
healthy lung with aging [3, 50, 63]. Thus, environment-
driven selection processes will shape a different micro-
biome despite similar processes of acquisition [64]. An
increasingly important factor could also be the frequent
usage of antibiotics, but due to the complexity and vari-
ability of therapeutic regimens, this will be difficult to
control in microbiota studies. Antibiotics with a broad
spectrum are potentially a strong selection pressure that
will affect more the whole microbiota than the targeted
pathogens. Furthermore, there is evidence that the
success of antimicrobial therapy is impacted by microbe-
microbe interactions, indicating that a personalized ther-
apy which takes into account the individual microbiome
should be favored [65].

What is the role of anaerobes in CF?
In the last years, many studies observed a negative
correlation between gram-negative pathogens and
commensal anaerobes, notably Prevotella and Veillo-
nella [3, 10, 66]. The reduction of the anaerobe load
was linked to a global worsening of the disease. This
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went along with a decrease of the clearance index
and increased inflammation even in the absence of P.
aeruginosa [55] or other pathogens. It was hypothe-
sized that commensal anaerobes in the lower airways
exert a protective role [67, 68]. Contrasting studies
showed that anaerobes are linked to exacerbation and
might create a favorable niche for recognized CF
pathogens [67, 69, 70]. Furthermore, antibiotic use in
CF drives a strong selection for antibiotic-resistant
bacteria from the whole microbiota. Therefore, an ac-
quired resistance from residential commensals can also
spread via passive resistance to CF pathogens [68, 71].
Those contradictory observations lead to the question
whether anaerobes in CF should be covered by antibiotic
regimens. Of note, many NGS-based studies observed a
negative impact of reduced anaerobe abundances in pa-
tient’s health. Definitively, more studies in the early steps
of the disease and the relationship anaerobes-pathogens
and anaerobes-health will be needed [67]. Those studies
probably will have to use metagenomic, metatranscrip-
tomic, or proteomic approaches to allow functional ana-
lysis instead of mere description of the microbiota
composition [72, 73].

A new connection: the gut-lung axis
While most of the studies focused on lung in CF, a new
focus is emerging which is the gut microbiome. The gut
microbiome is intensively studied in humans and has
been linked to several diseases and phenotypes. The im-
portance of this bacterial community especially relates
to the maturation of the immune system. It was ob-
served that the neonatal period is highly important to
establish a mature immune system. CFTR mutations
affect the gut and airway micro-environment inducing
modifications in the colonization process of microorgan-
isms even in the absence of antibiotics [3]. Patients suf-
fering from CF present with intestinal dysfunction,
pancreatic defect, and thicker mucus in the intestinal
lumen that will affect the structure and function of this
ecological niche [74–77]. It is well characterized that the
establishment of a beneficial community in the gut is as-
sociated with systemic health and immunity at distal
sites [78]. One of those distal sites is the lung which is
the most important niche under constant microbial
threat in CF. The influence of the gut microbiome on
lung health has been termed the gut-lung axis. This the-
ory relies on the fact that some microbes in the gut
might affect directly the lung microbiome via seeding
(during oesophageal reflux) or more likely indirectly via
transported metabolites through the bloodstream or by
influencing the systemic immune response.
Airways’ microbiota develops in the same time as the

gut microbiota, starting with colonization right after
birth. In CF, there is some evidence that dysbiosis in the

gut occurs in the early life of patients right after birth
[79]. This dysbiosis is most likely linked to the genetic
mutation as the structural and functional defects of the
gut originate from it. Gut inflammation is indeed ob-
served in young CF patients [80]. Experiments with
CFTR knockout mice showed that dysbiosis occurs even
in the absence of antibiotics and that the gut presents
with abnormal structure [81, 82]. In CF patients, alter-
ations of the lung microbiome also correlate to known
gastrointestinal complications [76, 77]. A decrease of
beneficial commensals (Bifidobacterium and Clostridia),
known to help the maturation of the immune system
and protecting against infection in healthy patients, was
observed. The colonization by the genus Veillonella also
seems to be altered by the CFTR mutation [83].
Early dysbiosis in the respiratory tract in CF patients

[60] might be associated with dysbiosis in the gut [78].
Some genera (Prevotella and Veillonella) are known to
belong to both niches, gut and lung. Following this ra-
tionale, Madan et al. designed a keystone longitudinal
study showing that gut and lung microbiome are two
distinct entities. However, the gut microbiota shared
with the airways a core set of common bacteria domi-
nated by Streptococcus and Veillonella in CF children up
to 21 months [14]. More than eight genera which in-
creased or decreased over time in the gut also showed
similar changes in the respiratory tract. Moreover, seven
genera colonizing the gut preceded the colonization in
the lungs. Of note, respiratory bacterial diversity and mi-
crobial structure were correlated to dietary modifications
(breast-feeding and introduction of solid food). The data
are compatible with a role of micro-aspiration from the
oral cavities in the colonization of the lower airways
[14]. Studies on probiotics administration in CF children
and young adult showed a beneficial effect on the lung
phenotype by decreasing the frequency of pulmonary ex-
acerbation and restoration of gut microbiota [84, 85]. In-
triguingly, those findings allow for speculation that
dietary changes and probiotics might be used to manipu-
late also the respiratory microbiota but whether this will
be possible only during a narrow window of first post-
natal colonization or might even work in elder people is
unclear.

Conclusions
Acquisition of the airways’ microbiota occurs in the first
days of life in CF patients as well as in healthy patients.
The same process of colonization is observed in all com-
partments of the upper airways with a first colonization
by a rich pool of bacteria that rapidly adapts during the
first months of life and is selected based on the capabil-
ity to grow and resist clearance. The gut microbiome is
interconnected to the early respiratory microbiome and
might play a role as initial source. The oropharyngeal

Boutin and Dalpke Molecular and Cellular Pediatrics  (2017) 4:1 Page 6 of 9



community of young CF patients shows few differences
compared to healthy controls while the nasal cavity
shows marked differences that establish early in life. For
clinical purposes, it could be valuable to restore a nor-
mal nasal microbiome thus reducing the S. aureus car-
riage early in the life of the patients. In the lungs,
limitations in sampling preclude longitudinal studies to
elucidate the acquisition of microbiome in the first days
of life. However, studies indicate that the throat micro-
biota well reflects the lower airways in young CF chil-
dren. Establishment of the lower airways’ microbiome is
strongly impacted by the upper airways’ bacterial com-
munity and starts as suggested by an island ecology
model. Neutral model applies for healthy lung micro-
biome, yet in CF, microenvironment factors contribute
over time to the establishment of a bona fide local mi-
crobial community that segregates from the influence of
the upper airways “mainland”.

Open questions and therapeutic implications
From the reported findings, a number of questions arise
which should be subject of future research: Is there an
influence of the gut microbiome on the respiratory
microbiome extending over the early time period of es-
tablishment? What is the functional role of the anaer-
obes found in the lower airways of CF patients? Do they
just mirror the source of colonization from upper com-
partments or do they play a functional role of its own
(disease aggravating or even beneficial)? What are the
interactions of classical pathogenic bacteria with com-
mensals and how do these interactions evolve to allow
establishment of dominant infections at later disease
stage? To what extent contributes the disturbed nasal
microbiome to an environment favoring infections of
the lower airways? What are the local host factors
(microenvironment, immunity) that allow selection pro-
cesses of local bacteria growth to occur in later micro-
biome development? What host factors differ in CF
patients resulting in deviation from the neutral ecology
model and resulting in a bona fide lung microbiota?
Therapeutic implications could be: Can nutritional
changes be used to modify the respiratory microbiome?
Could narrow-spectrum antibiotics or a targeted anti-
biotic strategy be useful to correct environment changes
that evolve over time in the lower airways? Might ma-
nipulation/correction of the disturbed early life nasal
microbiome be a strategy to influence later lower airway
microbiome composition (e.g., local S. aureus therapy)?
Might commensal “probiotics” be used to correct the
diseased CF microbiome?
Finally, most of the NGS-based studies so far focus on

taxonomical structure or composition. However, in order
to better understand relationships among the different
bacterial communities in the airways as well as to

elucidate the functional mechanisms leading to dysbio-
sis, true metagenomic, transcriptomic, and proteomic
studies targeting the whole genome, transcriptome, and
proteome will be necessary. Definitively, NGS studies
bear the potential to further increase our understanding
of the disturbed CF microbiota.
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