33 research outputs found

    Evolution and patterns of global health financing 1995-2014 : development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background An adequate amount of prepaid resources for health is important to ensure access to health services and for the pursuit of universal health coverage. Previous studies on global health financing have described the relationship between economic development and health financing. In this study, we further explore global health financing trends and examine how the sources of funds used, types of services purchased, and development assistance for health disbursed change with economic development. We also identify countries that deviate from the trends. Methods We estimated national health spending by type of care and by source, including development assistance for health, based on a diverse set of data including programme reports, budget data, national estimates, and 964 National Health Accounts. These data represent health spending for 184 countries from 1995 through 2014. We converted these data into a common inflation-adjusted and purchasing power-adjusted currency, and used non-linear regression methods to model the relationship between health financing, time, and economic development. Findings Between 1995 and 2014, economic development was positively associated with total health spending and a shift away from a reliance on development assistance and out-of-pocket (OOP) towards government spending. The largest absolute increase in spending was in high-income countries, which increased to purchasing power-adjusted 5221percapitabasedonanannualgrowthrateof3.05221 per capita based on an annual growth rate of 3.0%. The largest health spending growth rates were in upper-middle-income (5.9) and lower-middle-income groups (5.0), which both increased spending at more than 5% per year, and spent 914 and 267percapitain2014,respectively.Spendinginlowincomecountriesgrewnearlyasfast,at4.6267 per capita in 2014, respectively. Spending in low-income countries grew nearly as fast, at 4.6%, and health spending increased from 51 to 120percapita.In2014,59.2120 per capita. In 2014, 59.2% of all health spending was financed by the government, although in low-income and lower-middle-income countries, 29.1% and 58.0% of spending was OOP spending and 35.7% and 3.0% of spending was development assistance. Recent growth in development assistance for health has been tepid; between 2010 and 2016, it grew annually at 1.8%, and reached US37.6 billion in 2016. Nonetheless, there is a great deal of variation revolving around these averages. 29 countries spend at least 50% more than expected per capita, based on their level of economic development alone, whereas 11 countries spend less than 50% their expected amount. Interpretation Health spending remains disparate, with low-income and lower-middle-income countries increasing spending in absolute terms the least, and relying heavily on OOP spending and development assistance. Moreover, tremendous variation shows that neither time nor economic development guarantee adequate prepaid health resources, which are vital for the pursuit of universal health coverage.Peer reviewe

    Future and potential spending on health 2015-40 : development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential.Peer reviewe

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential

    The Immunopathology of SLE

    No full text

    Abnormal reticuloendothelial function in patients with active vasculitis and idiopathic membranous glomerulopathy - a study with tc-99m-labeled heat-damaged autologous red-blood-cells

    No full text
    Reticuloendothelial function was assessed in 11 patients with systemic lupus erythematosus, 8 patients with Wegener's granulomatosus, and 20 patients with idiopathic membranous glomerulopathy by using autologous 99mTc-labeled heat-damaged red blood cells. With this method organ uptake could be measured by quantitative scintigraphy. There was no relation between the T1/2 of the blood disappearance curve and the T1/2 of the splenic uptake curve. The T1/2 of the blood disappearance curve was normal in all three patient groups. However, there was asignificant shift from spleen to liver uptake in patients with active systemic lupus erythermatosus, active Wegener's granulomatosus, and membranous glomerulopathy in comparison with a control group. There was no relation with age, level of circulating immune complexes, complement level, kidney function, or immunosuppressive treatment. We conclude that an increease of the liver component of reticulo-endotherlial function may compensate abnormalities in splenic function. This stresses the importance of quantitative scanning to detect such abnormalities. The study provides evidence for disease related hyposplenism in patients with active systemic lupus erythematosus, active Wegener's granulomatosus, and membranous glomerulopathy
    corecore