614 research outputs found

    Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades

    Get PDF
    The current investigation presents detailed finite element simulations of coating stress analysis for a 3-dimensional, 3-layered model of a test sample representing a typical gas turbine component. Structural steel, Titanium alloy and Silicon Carbide are selected for main inner, middle and outermost layers respectively. ANSYS is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. The momentum and energy equations were solved, and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A discrete phase model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection. Extensive visualization of results is provided. The simulations show that ceramic (silicon carbide) when combined with titanium clearly provide good thermal protection; however, the ceramic coating is susceptible to cracking and the titanium coating layer on its own achieves significant thermal resistance. Higher strains are computed for the two-layer model than the single layer model (thermal case). However even with titanium only present as a coating the maximum equivalent elastic strain is still dangerously close to the lower edge. Only with the three-layer combined ceramic and titanium coating model is the maximum equivalent strain pushed deeper towards the core central area. Here the desired effect of restricting high stresses to the strongest region of the gas turbine blade model is achieved, whereas in the other two models, lower strains are produced in the core central zones. Generally, the CFD analysis reveals that maximum erosion rates are confined to a local zone on the upper face of the three-layer system which is in fact the sacrificial layer (ceramic coating). The titanium is not debonded or damaged which is essential for creating a buffer to the actual blade surface and mitigating penetrative corrosive effects. The present analysis may further be generalized to consider three-dimensional blade geometries and corrosive chemical reaction effects encountered in gas turbine aero-engines. Key words: Thermal coating; Silicon Carbide ceramic; ANSYS; Finite element stress analysis; CFD (computational fluid dynamics); mesh density; total deformation; erosion.</i

    An effective mesh strategy for CFD modelling of polymer electrolyte membrane fuel cells

    Get PDF
    Computational fluid dynamics (CFD) is a major tool in PEM fuel cell research. Typical three-dimensional PEM fuel cell models involve more than 106 mesh elements. This makes the computation very intense and necessitates a methodology to mesh the computational domain that can keep the number of elements to a minimum while maintaining good accuracy. In this study, the effect of computational mesh in each direction on the accuracy of the solution is investigated in a systematic way. It is found that the mesh in different directions has a different degree of influence on the solution suggesting that the mesh in one direction can be coarser than the other. The proposed mesh strategy is capable of greatly reducing the number of mesh elements, hence computation time, while preserving the characteristics of important flow-field variables. Moreover, it is applicable to a wide range of cell sizes and flow-field configurations and should be used as a guideline for mesh generation

    Surface Dynamics of Crude and Weathered Oil in the Presence of Dispersants: Laboratory Experiment and Numerical Simulation

    Get PDF
    Marine oil spills can have dire consequences for the environment. Research on their dynamics is important for the well-being of coastal communities and their economies. Propagation of oil spills is a very complex physical-chemical process. As seen during the Deepwater Horizon event in the Gulf of Mexico during 2010, one of the critical problems remaining for prediction of oil transport and dispersion in the marine environment is the small-scale structure and dynamics of surface oil spills. The laboratory experiments conducted in this work were focused on understanding the differences between the dynamics of crude and weathered oil spills and the effect of dispersants. After deposition on the still water surface, a drop of crude oil quickly spread into a thin slick; while at the same time, a drop of machine (proxy for weathered) oil did not show significant evolution. Subsequent application of dispersant to the crude oil slick resulted in a quick contraction or fragmentation of the slick into narrow wedges and tiny drops. Notably, the slick of machine oil did not show significant change in size or topology after spraying dispersant. An advanced multi-phase, volume of fluid computational fluid dynamics model, incorporating capillary forces, was able to explain some of the features observed in the laboratory experiment. As a result of the laboratory and modeling experiments, the new interpretation of the effect of dispersant on the oil dispersion process including capillary effects has been proposed, which is expected to lead to improved oil spill models and response strategies

    Design and operation of a Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) to study extensional properties of low viscosity polymer solutions

    Get PDF
    The Rayleigh Ohnesorge Jetting Extensional Rheometer (ROJER) enables measurement of very short relaxation times of low viscosity complex fluids such as those encountered in ink-jet printing and spraying applications. This paper focuses on the design and operation of the ROJER. The performance of two nozzle designs are compared using Newtonian fluids alongside a study using computational fluid dynamics (CFD). Subsequently a disposable nozzle is developed that overcomes issues of blockage and cleaning. The operability of this design is subject to a focused study where low viscosity polymer solutions are characterised. The test fluid materials are ethyl hydroxy-ethyl cellulose (EHEC) and poly ethylene oxide (PEO) mixed with water/glycerol solutions. Results obtained by the disposable nozzle are encouraging, paving the way for a more cost-efficient and robust ROJER setup

    RF thermal and new cold part design studies on TTF-III input coupler for Project-X

    Full text link
    RF power coupler is one of the key components in superconducting (SC) linac. It provides RF power to the SC cavity and interconnects different temperature layers (1.8K, 4.2K, 70K and 300K). TTF-III coupler is one of the most promising candidates for the High Energy (HE) linac of Project X, but it cannot meet the average power requirements because of the relatively high temperature rise on the warm inner conductor, some design modifications will be required. In this paper, we describe our simulation studies on the copper coating thickness on the warm inner conductor with RRR value of 10 and 100. Our purpose is to rebalance the dynamic and static loads, and finally lower the temperature rise along the warm inner conductor. In addition, to get stronger coupling, better power handling and less multipacting probability, one new cold part design was proposed using 60mm coaxial line; the corresponding multipacting simulation studies have also been investigated.Comment: 5 pages, 12 figures. Submitted to Chinese Physics C (Formerly High Energy Physics and Nuclear Physics

    Predictions of Heat Transfer and Flow Circulations in Differentially Heated Liquid Columns With Applications to Low-Pressure Evaporators

    Get PDF
    Numerical computations are presented for the temperature and velocity distributions of two differentially heated liquid columns with liquor depths of 0.1 m and 2.215 m, respectively. The temperatures in the liquid columns vary considerably with respect to position for pure conduction, free convection, and nucleate boiling cases using one-dimensional (1D) thermal resistance networks. In the thermal resistance networks the solutions are not sensitive to the type of condensing and boiling heat transfer coefficients used. However, these networks are limited and give no indication of velocity distributions occurring within the liquor. To alleviate this issue, two-dimensional (2D) axisymmetric and three-dimensional (3D) computational fluid dynamics (CFD) simulations of the test rigs have been performed. The axisymmetric conditions of the 2D simulations produce unphysical solutions; however, the full 3D simulations do not exhibit these behaviors. There is reasonable agreement for the predicted temperatures, heat fluxes, and heat transfer coefficients when comparing the boiling case of the 1D thermal resistance networks and the CFD simulations
    • …
    corecore