50 research outputs found
Small Deletion at the 7q21.2 Locus in a CCM Family Detected by Real-Time Quantitative PCR
Cerebral cavernous malformations (CCMs) represent a common autosomal dominant disorder that predisposes patients to haemorrhagic strokes and focal neurological signs. About 56% of the hereditary forms of CCMs have been so far associated with mutations in the KRIT1 (Krev Interaction Trapped 1) gene, located at 7q21.2 (CCM1 locus). We described the complete loss of 7q21.2 locus encompassing the KRIT1 gene and 4 flanking genes in a CCM family by using a dense set of 12 microsatellite markers. The complete loss of the maternal copy of KRIT1 gene region was confirmed by Real-Time Quantitative Polymerase Chain Reaction (RT-QPCR) and the same approach was used for expression analysis. Additional RT-QPCR analysis showed the extension of the deletion, for a total of 700 kb, to the adjacent downstream and upstream-located genes, MTERF, AKAP9, CYP51A1, as well as a partial loss of the ANKIB1 gene. Here we report the molecular characterization of an interstitial small genomic deletion of the 7q21.2 region in a CCMs affected family, encompassing the KRIT1 gene. Our findings confirm the loss of function mechanism for the already known CCM1 locus, without any evident involvement of the other deleted genes. Moreover, our investigations highlight the usefulness of the RT-QPCR to the molecular characterization of the breakpoints genomic deletions and to the identification of internal deleted genes involved in the human genetic diseases
A novel prostate cell type-specific gene signature to interrogate prostate tumor differentiation status and monitor therapeutic response (running title: Phenotypic classification of prostate tumors)
In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low- luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples
The beneficial effects of physical activity and weight loss on human colorectal carcinoma cell lines
Recent studies have demonstrated that obesity is a significant risk factor for the development of several malignancies such as cancer. Colorectal cancer is among the most common cancers worldwide and is strong linked to obesity. A healthy lifestyle, characterized by hypocaloric diet and physical activity, is important to reduce a chronic inflammation, oxidative stress and metabolic disorders typical of obesity (Messina et al, 2018; Messina et al, 2017; Messina et al, 2015). It is well known that the chronic inflammation state and oxidative stress are responsible for the aging and development of many diseases, such as cancer. Dysregulation of cytokine’s secretion probably participates in the establishment of cancer in obese patients. The aim of this study is to analyse the effects of sera from obese patients subjected to a physical activity program before and after weight loss on cell viability, apoptosis and oxidative stress in HCT116 carcinoma cell line treated for 24, 48 and 72 hours through MTT test. We analysed the expression of cytokines in HCT116 cells. We found that sera from obese after physical activity intervention compared to treatment with sera from obese patients before physical activity intervention reduce the survival rate of HCT116 cells through induction of apoptosis and oxidative stress. Finally, we found a reduction of mRNA levels corresponding to the pro-inflammatory IL-6 and IL-8 cytokines together with an increase of the anti-inflammatory IL-10 cytokine. We can conclude that the physical activity has numerous beneficial effects also in colorectal cancer cell, indeed the physical activity and weight loss in obese subjects have an inhibitory and anti-inflammatory effects in a short period on carcinoma cell line
Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials
High Specificity of Quantitative Methylation-Specific PCR Analysis for MGMT Promoter Hypermethylation Detection in Gliomas
Normal brain tissue from 28 individuals and 50 glioma samples were analyzed by real-time Quantitative Methylation-Specific PCR (QMSP). Data from this analysis were compared with results obtained on the same samples by MSP. QMSP analysis demonstrated a statistically significant difference in both methylation level (P = .000009 Mann Whitney Test) and frequencies (P = .0000007, Z-test) in tumour samples as compared with normal brain tissues. Although QMSP and MSP showed similar sensitivity, the specificity of QMSP analysis was significantly higher (93%; CI95%: 84%–100%) as compared with MSP (64%; 95%CI: 46%–82%). Our results suggest that QMSP analysis may represent a powerful tool to identify glioma patients that will benefit from alkylating agents chemotherapy
Supratentorial cerebral cavernous malformations: clinical, surgical, and genetic involvement
Object
Although there is general agreement on the methods of treatment for symptomatic supratentorial cerebral cavernous malformations (CMs) located in noneloquent areas, some controversy exists regarding the management of cerebral CMs that are asymptomatic and/or located in eloquent or deep areas. Moreover, recent advances in genetic findings could influence both standard clinical management and the follow-up strategy in affected individuals. Thus, the objective of this study was to develop, based on the authors' experience and a literature review, a management algorithm to deal with supratentorial cerebral CMs.
Methods
The authors retrospectively reviewed the clinical data related to 118 patients who underwent surgery for symptomatic supratentorial cerebral CMs at their institution. Twenty-eight of 118 patients harbored multiple lesions, and nine of these 28 patients had a clinically positive familial history. Genetic investigations were performed in 89 patients (75%).
Conclusions
Surgery for supratentorial cerebral CMs in noneloquent locations is safe and curative. In cerebral CMs located in deep and eloquent areas and with symptoms including progressive neurological deficits, evidence of hemorrhage, and uncontrolled seizures, surgical treatment according to an integrated plan based on frameless stereotactic guidance and functional magnetic resonance imaging is recommended and results in acceptably low morbidity. The data support the need for long-term imaging follow up in all patients, careful preoperative vascular studies to detect associated venous anomalies, and the importance of genetic mutational analysis. The DNA screening protocol will change the care of family members of patients with familial forms of cerebral CMs, because affected asymptomatic family members may benefit by early detection of lesions. At the same time, the exclusion of family members who are not carriers of the mutation as members of the population at risk reduces the economic and psychological burden of clinical and instrumental monitoring
The interplay among psychopathology, personal resources, context-related factors and real-life functioning in schizophrenia: stability in relationships after 4 years and differences in network structure between recovered and non-recovered patients
Improving real-life functioning is the main goal of the most advanced integrated treatment programs in people with schizophrenia. The Italian Network for Research on Psychoses previously explored, by using network analysis, the interplay among illness-related variables, personal resources, context-related factors and real-life functioning in a large sample of patients with schizophrenia. The same research network has now completed a 4-year follow-up of the original sample. In the present study, we used network analysis to test whether the pattern of relationships among all variables investigated at baseline was similar at follow-up. In addition, we compared the network structure of patients who were classified as recovered at follow-up versus those who did not recover. Six hundred eighteen subjects recruited at baseline could be assessed in the follow-up study. The network structure did not change significantly from baseline to follow-up, and the overall strength of the connections among variables increased slightly, but not significantly. Functional capacity and everyday life skills had a high betweenness and closeness in the network at follow-up, as they had at baseline, while psychopathological variables remained more peripheral. The network structure and connectivity of non-recovered patients were similar to those observed in the whole sample, but very different from those in recovered subjects, in which we found few connections only. These data strongly suggest that tightly coupled symptoms/dysfunctions tend to maintain each other's activation, contributing to poor outcome in schizophrenia. Early and integrated treatment plans, targeting variables with high centrality, might prevent the emergence of self-reinforcing networks of symptoms and dysfunctions in people with schizophrenia
The interplay among psychopathology, personal resources, context-related factors and real-life functioning in schizophrenia: stability in relationships after 4 years and differences in network structure between recovered and non-recovered patients
Improving real-life functioning is the main goal of the most advanced integrated treatment programs in people with schizophrenia. The Italian Network for Research on Psychoses previously explored, by using network analysis, the interplay among illness-related variables, personal resources, context-related factors and real-life functioning in a large sample of patients with schizophrenia. The same research network has now completed a 4-year follow-up of the original sample. In the present study, we used network analysis to test whether the pattern of relationships among all variables investigated at baseline was similar at follow-up. In addition, we compared the network structure of patients who were classified as recovered at follow-up versus those who did not recover. Six hundred eighteen subjects recruited at baseline could be assessed in the follow-up study. The network structure did not change significantly from baseline to follow-up, and the overall strength of the connections among variables increased slightly, but not significantly. Functional capacity and everyday life skills had a high betweenness and closeness in the network at follow-up, as they had at baseline, while psychopathological variables remained more peripheral. The network structure and connectivity of non-recovered patients were similar to those observed in the whole sample, but very different from those in recovered subjects, in which we found few connections only. These data strongly suggest that tightly coupled symptoms/dysfunctions tend to maintain each other's activation, contributing to poor outcome in schizophrenia. Early and integrated treatment plans, targeting variables with high centrality, might prevent the emergence of self-reinforcing networks of symptoms and dysfunctions in people with schizophrenia
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation