18 research outputs found
Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes
The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs) was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran). Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples) due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally "single-use" devices
A Computational Approach to Finding Novel Targets for Existing Drugs
Repositioning existing drugs for new therapeutic uses is an efficient approach to drug discovery. We have developed a computational drug repositioning pipeline to perform large-scale molecular docking of small molecule drugs against protein drug targets, in order to map the drug-target interaction space and find novel interactions. Our method emphasizes removing false positive interaction predictions using criteria from known interaction docking, consensus scoring, and specificity. In all, our database contains 252 human protein drug targets that we classify as reliable-for-docking as well as 4621 approved and experimental small molecule drugs from DrugBank. These were cross-docked, then filtered through stringent scoring criteria to select top drug-target interactions. In particular, we used MAPK14 and the kinase inhibitor BIM-8 as examples where our stringent thresholds enriched the predicted drug-target interactions with known interactions up to 20 times compared to standard score thresholds. We validated nilotinib as a potent MAPK14 inhibitor in vitro (IC50 40 nM), suggesting a potential use for this drug in treating inflammatory diseases. The published literature indicated experimental evidence for 31 of the top predicted interactions, highlighting the promising nature of our approach. Novel interactions discovered may lead to the drug being repositioned as a therapeutic treatment for its off-target's associated disease, added insight into the drug's mechanism of action, and added insight into the drug's side effects
Differential effects of microorganism-invertebrate interactions on benthic nitrogen cycling
Infaunal invertebrate activity can fundamentally alter physicochemical conditions in sediments and influence nutrient cycling. However, despite clear links between invertebrate activity and microbially mediated processes such as nitrification, the mechanisms by which bioturbating macrofauna affect microbial communities have received little attention. This study provides strong evidence for differential stimulation of microbial nitrogen transformations by three functionally contrasting species of macrofauna (Hediste diversicolor, Corophium volutator, Hydrobia ulvae). Despite increased nitrification, abundance of ammonia-oxidising bacteria (AOB) and ammonia-oxidising archaea (AOA) at the sedimentβwater interface did not significantly change in the presence of macrofauna. However, species-specific differences in macrofaunal activity did influence ammonia oxidiser community structure, increasing AOB abundance relative to AOA in the presence of C. volutator or H. ulvae, but with no change in H. diversicolor and no-macrofauna treatments. Denaturing gradient gel electrophoresis profiles were similar between macrofaunal treatments, although one AOB band increased in relative intensity in the presence of C. volutator, decreased in the H. diversicolor treatment and was unchanged in the H. ulvae treatment. These data suggest that links between bioturbating macrofauna and nutrient cycling are not expressed through changes in the abundance of ammonia oxidisers in surface sediments, but are associated with changes in the AOA : AOB ratio depending on the invertebrate species