15 research outputs found

    HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis

    Get PDF
    Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/β-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment

    Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates

    Get PDF
    NOTICE: This is the peer reviewed version of the following book chapter: Varela J. A., González-Rodríguez C., Saá C. (2014). Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates. In: Dixneuf P., Bruneau C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48, pp. 237-287. Springer, Cham. [doi: 10.1007/3418_2014_81]. This article may be used for non-commercial purposes in accordance with Springer Verlag Terms and Conditions for self-archiving.Vinylidenes are high-energy tautomers of terminal alkynes and they can be stabilized by coordination with transition metals. The resulting metal-vinylidene species have interesting chemical properties that make their reactivity different to that of the free and metal π-coordinated alkynes: the carbon α to the metal is electrophilic whereas the β carbon is nucleophilic. Ruthenium is one of the most commonly used transition metals to stabilize vinylidenes and the resulting species can undergo a range of useful transformations. The most remarkable transformations are the regioselective anti-Markovnikov addition of different nucleophiles to catalytic ruthenium vinylidenes and the participation of the π system of catalytic ruthenium vinylidenes in pericyclic reactions. Ruthenium vinylidenes have also been employed as precatalysts in ring closing metathesis (RCM) or ring opening metathesis polymerization (ROMP). Allenylidenes could be considered as divalent radicals derived from allenes. In a similar way to vinylidenes, allenylidenes can be stabilized by coordination with transition metals and again ruthenium is one of the most widely used metals. Metalallenylidene complexes can be easily obtained from terminal propargylic alcohols by dehydration of the initially formed metal-hydroxyvinylidenes, in which the reactivity of these metal complexes is based on the electrophilic nature of Cα and Cγ, while Cβ is nucleophilic. Catalytic processes based on nucleophilic additions and pericyclic reactions involving the π system of ruthenium allenylidenes afford interesting new structures with high selectivity and atom economy

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Cyclometalated Ruthenium Alkylidene Complexes: A Powerful Family of Z -Selective Olefin Metathesis Catalysts

    No full text
    The past 5 years have witnessed an enormous growth in the field of Z-selective olefin metathesis. The development of a new class of cyclometalated ruthenium-based catalysts has extended the utility of olefin metathesis to the synthesis of useful Z-olefin-containing small molecules, polymers, and natural products. This review highlights the recent advances in the area of Z-selective olefin metathesis employing cyclometalated ruthenium alkylidene catalysts, with particular focus on its applications and mechanistic basis. A deeper understanding of structure–activity relationships should aid in the future design of even more active and selective olefin metathesis catalysts

    Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies

    No full text

    Wetlands of tropical South America

    No full text

    Zona incerta as a therapeutic target in Parkinson’s disease

    No full text

    Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke

    No full text
    corecore