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Abbreviations 
 
 
Ac  acetyl 
acac  acetylacetonate 
AIBN  2,2'-azobisisobutyronitrile 
anhyd  anhydrous 
Ar  aryl 
9-BBN  9-borabicyclo[3.3.1]nonane 
Bn  benzyl 
Bpy  2,2'-bipyridyl 
Boc  tert-butoxycarbonyl 
Bp  boiling point 
Bu  butyl 
s-Bu  sec-butyl 
t-Bu  tert-butyl 
Bz  benzoyl 
CAN  ceric ammonium nitrate 
cat  catalyst 
Cbz  benzyloxycarbonyl 
CIP  Cahn—Ingold—Prelog 
cod  cyclooctadiene 
concd  concentrated 
cot  cyclooctatetraene 
Cp  cyclopentadienyl 
CSA  camphorsulfonic acid 
d  day(s)  
DABCO  1,4-diazabicyclo[2.2.2]octane 
DBN  1,5-diazabicyclo[4.3.0]non-5-ene 
DBU  1,8-diazabicyclo[5.4.0]undec-7-ene 
DCC  N,N-dicyclohexylcarbodiimide 
DDQ  2,3-dichloro-5,6-dicyano-1,4-benzoquinone 
de  diastereomeric excess (discouraged, see dr) 
DEAD  diethyl azodicarboxylate 
DET  diethyl tartrate 
DIBALH diisobutylaluminum hydride 
DIPT  diisopropyl tartrate 
DMAP  4-(dimethylamino)pyridine 
DMB  3,4-dimethoxybenzyl 
DME  1,2-dimethoxyethane 
DMF  dimethylformamide 
DMPU  1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone 
DMSO  dimethyl sulfoxide 
dppe  bis(diphenylphosphino)ethane 
dppm  bis(diphenylphosphino)methane 
dr  diastereomeric ratio 
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EDTA  ethylenediaminetetraacetic acid 
ee  enantiomeric excess 
equiv  equivalent(s) 
Et  ethyl 
Fmoc  9-fluorenylmethoxycarbonyl 
h  hour(s) 
HMPA  hexamethylphosphoric triamide 
L  liter(s) 
LDA  lithium diisopropylamide 
LHMDS  lithium hexamethyldisilazide, lithium bis(trimethylsilyl)amide 
LTMP  lithium 2,2,6,6-tetramethylpiperidide 
KHMDS potassium hexamethyldisilazide, potassium 

bis(trimethylsilyl)amide 
m-CPBA m-chloroperoxybenzoic acid 
Me  methyl 
MEM  (2-methoxyethoxy)methyl 
Mes   mesityl, 2,4,6-trimethylphenyl (not methanesulfonyl) 
min   minute(s) 
mol   mole(s) 
MOM   methoxymethyl 
Ms   methanesulfonyl (mesyl) 
nbd   norbornadiene 
NBS   N-bromosuccinimide 
NCS   N-chlorosuccinimide 
Nu   nucleophile 
op   optical purity (discouraged, see ee) 
PCC   pyridinium chlorochromate 
PDC   pyridinium dichromate 
Ph   phenyl 
phth   phthalate 
PMB   4-methoxyphenyl 
PNB  4-nitrobenzyl 
PPA  poly(phosphoric acid) 
PPTS  pyridinium p-toluenesulfonate 
Pr  propyl 
i-Pr  isopropyl 
Pv  pivaloyl 
py  pyridine 
rt  room temperature 
s  second(s) 
SEM  2-(trimethylsilyl)ethoxymethyl 
TBAF  tetrabutylammonium fluoride 
TBDMS  tert-butyldimethylsilyl 
TBDPS  tert-butyldiphenylsilyl 
TCNE  tetracyanoethylene 
Tf  trifluoromethanesulfonyl (triflyl) 
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TFA  trifluoroacetic acid 
TFAA  trifluoroacetic anhydride 
thexyl  1,1,2-trimethylpropyl 
THF  tetrahydrofuran 
THP  tetrahydropyran-2-yl 
TIPDS  1,1,3,3-tetraisopropyldisiloxane-1,3-diyl 
TIPS  triisopropylsilyl 
TMEDA N,N,N',N'-tetramethyl-1,2-ethylenediamine 
TMS  trimethylsilyl 
Tol  4-methylphenyl 
Tr  triphenylmethyl (trityl) 
Ts  tosyl, 4-toluenesulfonyl 

Abstract Vinylidenes are high-energy tautomers of terminal alkynes and they can 
be stabilized by coordination to transition metals. The resulting metal-vinylidene 
species have interesting chemical properties that make their reactivity different to 
that of the free and metal π-coordinated alkynes: the carbon α to the metal is 
electrophilic whereas the β carbon is nucleophilic. Ruthenium is one of the most 
commonly used transition metals to stabilize vinylidenes and the resulting species 
can undergo a range of useful transformations. The most remarkable 
transformations are the regioselective anti-Markovnikov addition of different 
nucleophiles to catalytic ruthenium vinylidenes and the participation of the π 
system of catalytic ruthenium vinylidenes in pericyclic reactions. Ruthenium 
vinylidenes have also been employed as precatalysts in ring closing metathesis 
(RCM) or ring opening metathesis polymerization (ROMP). 

Allenylidenes could be considered as divalent radicals derived from allenes. In a 
similar way to vinylidenes, allenylidenes can be stabilized by coordination to 
transition metals and again ruthenium is one of the most widely used metals. 
Metal-allenylidene complexes can be easily obtained from terminal propargylic 
alcohols by dehydration of the initially formed metal-hydroxyvinylidenes, in 
which the reactivity of these metal complexes is based on the electrophilic nature 
of Cα  and Cγ, while Cβ is nucleophilic. Catalytic processes based on nucleophilic 
additions and pericyclic reactions involving the π system of ruthenium 
allenylidenes afford interesting new structures with high selectivity and atom 
economy. 

Keywords Ruthenium vinylidenes, Ruthenium allenylidenes, Ruthenium catalysis 
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1. Introduction 

Free vinylidene is a high-energy tautomer of an alkyne that can be effectively 
stabilized by coordination to transition metals.[1] Since the first formation and 
stabilization of vinylidenes at a transition metal center reported in 1966,[2] a great 
deal of effort has been focused on both experimental and theoretical approaches to 
determine the mechanism for the transformation of terminal alkynes into the 
corresponding vinylidene complexes.[3] It is widely accepted that there are three 
general pathways through which this transformation can occur (Scheme 1) and 
each involves the initial formation of a complex that contains an alkyne in a η2-
binding mode. Two alternative pathways have been proposed for concerted 
migration of the hydrogen atom: (a) for d6 metal systems such as Ru(II) and Mn(I) 
complexes the migration proceeds by a 1,2-hydrogen shift (pathway 1, Scheme 
1)[4,3]; (b) isomerization of the d8 metal systems such as Co(I) and Rh(I) occurs 
by a 1,3-hydrogen shift via a hydride-alkynyl intermediate (pathway 2, Scheme 
1).[5,3]. In the specific case where the central metal bears a hydride, a new route 
to vinylidenes has been identified and this involves the intermediacy of a metal 
alkenyl ligand, which can be obtained through insertion of an alkyne into a metal 
hydride bond (pathway 3, Scheme 1).[6,3,4b] 
The conversion of internal alkynes to vinylidenes was considered an unusual 
process and it had only been reported for trialkylsilyl,[7] trimethylstannane,[8] 
alkylthiol[9] and iodo[10] substituted alkynes. Nevertheless, it has been recently 
reported the migration of acyl and aryl substituents in internal alkynes,[11] with 
the following order of the migratory efficiency: CO2Et>p-CO2EtC6H4>p-
ClC6H4>Ph>p-MeC6H4Me>p-OMeC6H4,[11] in which electron-withdrawing 
substituents on the aryl ring enhance the migratory aptitude. 

RH

R[M]
H

R[M]
[M]

H

[M]
·

R

H

RH
[M] H H

RH

[M]
[M]

·
R

HH

Pathway 1

Pathway 2

Pathway 3

 
Scheme 1 
The properties of vinylidene ligands are derived from the presence of an 
electrophilic coordinated carbon atom as well as the metal carbene character. The 
main processes in which metal-vinylidenes are involved that highlight their 
catalytic applications are: 
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(a) Addition of nucleophiles to the electrophilic coordinated Cα. 
(b) Alkyl, alkenyl or alkynyl migration from the metal center to the Cα. 
(c) Pericyclic reactions. 

In this chapter the main applications of catalytic ruthenium vinylidenes that have 
been reported in the last decade are reviewed.[12] 

2. Nucleophilic Addition to Catalytic Ruthenium Vinylidenes 

Due to the electrophilic nature of the Cα in vinylidenes, their reactivity is 
dominated by the addition of nucleophiles to this position to afford Fischer-type 
carbenes (Scheme 2). Depending on the nature of the nucleophile and the 
subsequent evolution of the carbene a wide variety of compounds can be 
generated (aldehydes, dihydropyrans, furans, β,γ-unsaturated ketones, etc.).[12] 
The regioselectivity of this process led to the product resulting from addition of 
the nucleophile to the less substituted carbon of the alkyne (anti-Markovnikov 
addition), which is the opposite result to that observed when the alkyne is 
activated by a Lewis-acid (Markovnikov addition). 

R Cβ Cα H
[M]

Cβ Cα [M]
δ+δ

−R

H

H Nu
Cβ Cα

Nu

[M]

R

H H
Fischer carbene  

Scheme 2 

2.1.  O- and S-Nucleophiles 

The use of catalytic vinylidenes was first reported by Dixneuf and Sasaki for the 
synthesis of alkenyl carbamates by anti-Markovnikov addition of an in situ 
generated carbamate to alkynes (Scheme 3).[13] Since then, several variations – 
including catalyst modifications – have been attempted in an effort to improve 
selectivities and yields.[14] 
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nC4H9 H + Et2NH + CO2
Ru3(CO)12

 
(2mol%)

toluene, 140 ºC
36%

R1

H H

O
NEt2

O

·
RuLn O

RuLn

O

NEt2

+
R1

O
NEt2

O11 (6:5 Z:E): 1

nC4H9nC4H9

2 Et2NH + CO2 Et2NH2

Et2NH
O

OEt2N
+

 
Scheme 3 
Carboxylic acids are capable of adding to catalytic ruthenium vinylidenes to 
afford enol ester derivatives. The mechanism involves the formation of a 
ruthenium vinylidene species followed by nucleophilic attack of the benzoic acid 
to the electrophilic Cα of the vinylidene. The [Ru(2-methallyl)2dppb] complex has 
proven to be a superb catalyst for this transformation (Scheme 4).[15,16] 

R1 + PhCO2H [Ru(2-methallyl)2dppb] (2mol%)

toluene, ∆
92-97%

R1 O
Ph

O

R1 = Ph, nC4H9
,

 
Scheme 4 
Interestingly, modulation of the regioselectivity of the reaction from anti-
Markovnikov (formation of the vinylidene) to Markovnikov (either by 
electrophilic activation of the alkynes or by oxidative addition of the acid to the 
ruthenium complex and subsequent migratory insertion and reductive elimination) 
was observed on using [(p-cymene)RuCl2]2 as the ruthenium catalyst and different 
phosphine ligands and bases (Table 1).[12d,g],[17] 

R + PhCO2H

[(p-cymene)RuCl2]2
ligand, base
toluene, 16 h

R O
Ph

O

R

O
O

Ph
+

I II  
R Cat. 

(mol%) Ligand (mol%) Base (mol%) T 
(ºC) 

Yield 
(mol%) I/II 

n-Bu 1 P(4-Cl-C6H4)3 (3) DMAP (4) 60 89 50:1 
n-Bu 0.4 P(furyl)3 (0.8) Na2CO3 (1.6) 50 93 1:30 
Ph 1 P(4-Cl-C6H4)3 (3) DMAP (4) 60 99 50:1 
Ph 0.4 P(furyl)3 (0.8) Na2CO3 (1.6) 70 88 1:1.5 

t-Bu 1 P(4-Cl-C6H4)3 (3) DMAP (4) 80 68 50:1 
t-Bu 0.4 P(furyl)3 (0.8) Na2CO3 (1.6) 50 88 1:10 

Table 1 
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Intramolecular anti-Markovnikov addition of carboxylic acids to alkynes was also 
achieved using ruthenium catalysts. α,ω-Alkynoic acids afford the corresponding 
cycloalkene lactones by intramolecular addition of the carboxylic acid to the 
corresponding catalytic vinylidene species obtained by treatment of the alkyne 
with the complex [TpRu[C(Ph)=C(Ph)C≡CPh]PMe(i-Pr)2] [18] or [RuClx(p-
cymene)(triazol-5-ylidene)] (Scheme 5).[19]  

OH

O

( )n
[Ru] cat.

toluene, ∆
45-98%

O

O

( )n

n = 1, 2, 3, 7  
Scheme 5 
The enol esters obtained in this transformation can be further modified bearing in 
mind that they are protected aldehydes. Treatment of propargyl alcohols with 
benzoic acid in the presence of complex (dppe)Ru(2-methallyl)2 as catalyst affords 
the enol esters derived from the anti-Markovnikov addition of the acid to the 
alkyne (Scheme 6). Subsequent acid treatment gives rise to the conjugated enal, 
which is an isomer of the starting propargylic alcohol.[20] 

+ PhCO2H
cat (dppe)Ru(2-methallyl)2

toluene, ∆
51−90%

R1

HO

R2

R1

OH

R2

OCOPh

TsOH
toluene, rt
57-91% PhCO2H

O

R1

R2

Z/E 60-100:40-0R1, R2 = Me, alkyl, alkenyl, Ph

 
Scheme 6 
The use of water as the nucleophile in the presence of a catalytic ruthenium 
vinylidene directly affords the aldehyde derived from the anti-Markovnikov 
hydration of a terminal alkyne. The first example of this reaction was reported by 
the group of Wakatsuki, who used [RuCl2(C6H6)]2 or RuCl2(C6H6)(phosphine) 
with additional specific phosphine ligands PPh2(C6F5) or P(3-C6H4SO3Na)3.[21] 
The same research group reported that cyclopentadienylruthenium complexes of 
type A (Scheme 7) bearing bidentate phosphine ligands show much higher activity 
and complete selectivity to the anti-Markovnikov hydration product.[22,4b] 
Grotjahn and co-workers reported that other ruthenium catalysts obtained by 
changing the phosphine ligand for imidazolylphosphanes (type B, Scheme 7),[23] 
showed even better selectivities under milder conditions, i.e., room temperature 
and with lower catalytic loadings. On the other hand, Breit and co-workers 
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showed that ruthenium catalysts bearing bidentate ligands, generated by the self-
assembly of monodentate ligands through complementary hydrogen bonding of 
aminopyridine/isoquinoline systems, also lead to highly regioselective anti-
Markovnikov hydration of terminal alkynes (type C, Scheme 7).[24] 

R H + H2O
cat [Ru]

R
H

O
R = alkyl, Ph, Bn, tBu, NC(CH2)3, etc.

[Ru] =
Ph2P PPh2

Ru Cl

Ru NCMe

Ru

N N
N N

Me MePPh2 PPh2

H
O

H

tBu tBu

OTf

PF6

Ru NCMe

N

PPh2

N

PPh2

PF6

H

ON H
Piv

L L'

AZARYPHOS

N RPh2P
 
R = tBu, tAm, 2,4,6iPr3C6H2, 2,4,6Ph3C6H2Homoleptic L' = L

Heteroleptic L' = PPh3

L =

A
B

C

·
[Ru]

R

H
R [Ru]

O

H H

R [Ru]

O

H H
H

H2O H

 
Scheme 7 
Another family of phosphane ligands that contain a phosphine unit and sterically 
shielded nitrogen lone pairs in the ligand periphery are the so-called 
AZARYPHOS (aza-aryl-phosphane, L) ligands. The incorporation of these 
ligands into homoleptic ruthenium complexes [RuCp(L)2(MeCN)][PF6], either 
preformed [25] or generated in situ,[26] provides catalysts for the anti-
Markovnikov hydration of terminal alkynes with the highest known activities.[27] 
Recently, heteroleptic ruthenium complexes [RuCp(L)(L')(MeCN)][PF6], in which 
L is AZARYPHOS and L' is a suitable non-functionalized placeholder phosphane 
ligand such as PPh3, have shown high catalytic activity. This result implies that 
only one bifunctional ligand is involved in the postulated ambifunctional reaction 
mechanism (Scheme 7).[28] 
N-Protected β-amino aldehydes have been prepared from imines through a 
sequence that involves a Zn-mediated direct alkynylation followed by a Ru-
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catalyzed anti-Markovnikov alkyne hydration using a homoleptic ruthenium 
complex with AZARYPHOS ligands (Scheme 8).[29] 

N

HR

PG
+ TMSH

N

R
H

1) ZnMe2    
toluene, ∆

2) TBAF, THF
H PG

[CpRu(Naphth)]PF6
(5-10 mol%),

L (10-20 mol%)

H2O (5 equiv),
acetone, ∆

N

R

H PG

H

O

 
Scheme 8 
Intermolecular addition of alcohols to catalytic ruthenium vinylidenes is far more 
difficult than the addition of water except when allylic alcohols are employed 
(Scheme 9).[30] In this case, the reaction of an allylic alcohol with a terminal 
alkyne catalyzed by CpRuCl(PPh3)2 afforded a β,γ-unsaturated ketone. The initial 
ruthenium oxacarbene obtained by addition of the alcohol to the ruthenium 
vinylidene evolves through a Claisen rearrangement to a π-allyl ruthenium 
species. Reductive elimination then gives rise to the final unsaturated ketone. 

( )n
+

OH

[CpRuCl(PPh3)2] (10 mol%)
NH4PF6 (20 mol%)

100 ºC
63%

( )n

O

·
( )n

[Ru] ( )n

[Ru]

O ( )n

[Ru]

OClaisen
OH

 
Scheme 9 
Intramolecular addition of alcohols to vinylidenes to afford oxygen-containing 
heterocycles has been used more widely than the intermolecular version of this 
reaction.[31] Trost and co-workers described the cyclization of homo- and bis-
homopropargyl alcohols in the presence of catalytic ruthenium vinylidenes. 
Cyclization of homopropargyl alcohols in the presence of catalytic amounts of 
CpRuCl(cod) afforded the corresponding γ-butyrolactones by a sequence that 
involved intramolecular addition of the hydroxy group to the ruthenium vinylidene 
followed by oxidation of the initially formed hemiacetal group (Scheme 10).[32] 

OH
R + N

O

O

OH
O

R

CpRuCl(cod) (10 mol%)
P(2-furyl)3

 
(15 mol%)

nBu4NPF6
 
(30 mol%)

DMF, H2O, 95 ºC
48-74%

O

 
Scheme 10 
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On the other hand, cyclization of bis-homopropargyl alcohols with CpRuCl(PAr3)2 
can be modulated depending on the electronic properties of the ligand.[33] The 
use of electron-donating ligands such as tris(4-methoxyphenyl)phosphine gave 
rise to δ-valerolactone (addition of the hydroxy group to the Ru-vinylidene 
followed by oxidation), while the use of the electron-withdrawing ligand tris(4-
fluorophenyl)phosphine led to cycloisomerization to give dihydropyrans (addition 
of the hydroxy group to the Ru-vinylidene followed by β-hydride elimination) 
(Scheme 11).  

R

+

N

O

O

OH

NaHCO3
 
(2 equiv)

CpRuCl{(4-MeO-C6H4)3P}2
 
(10-15 mol%) 

(4-MeO-C6H4)3P (40-60 mol%) nBu4NPF6
 
(30-45 mol%)

DMF, 85 ºC
48-70%OH

NaHCO3
CpRuCl{(4-F-C6H4)3P}2

 
(5 mol%)

(4-F-C6H4)3P (20 mol%)
nBu4NPF6

 
(15 mol%)

DMF, 85 ºC
44-72%

O

O

O

R

R

 
Scheme 11 
These cycloisomerization conditions proved to be chemoselective for the O-
cyclizations over the N-cyclizations. Dihydropyrans were the products obtained 
when aminoalcohols bearing an alkyne group were exposed to the Ru-catalyzed 
cycloisomerization conditions [i.e., CpRuCl(PPh3)2, NaHCO3, N-
hydroxysuccinimide and Bu4NPF6 in DMF at 80 ºC for 8 h] (Scheme 12).[34] 

OH

BocHN

Me

CpRuCl(PPh3)2
 
(3 mol%)

NaHCO3, Bu4NPF6
N-hydroxysuccinimide

DMF, 80 ºC, 8h
85%

O

BocHN

Me

N
Boc

OH

Me
not observed

 
Scheme 12 
The ruthenium complex [Ru(N3P)(OAc)][BPh4], in which N3P is the N,P mixed 
tetradentate ligand N,N-bis[(pyridin-2-yl)methyl]-[2-
(diphenylphosphino)phenyl]methanamine, was found to be catalytically active for 
the endo cycloisomerization of aliphatic alkynols to five-, six- and seven-
membered endo-cyclic enol ethers in good to excellent yield (Scheme 13).[35] 
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OH cat [Ru]
THF, 80 ºC

78-98%( )n

[Ru] = Ru
N

N N

O

PPh2

O
CH3

BPh4

n = 0,1,2

R1

R2

R3

O

R1
R2 R3( )n

 
Scheme 13 
On the other hand, cycloisomerization of aromatic homo- and bis-
homopropargylic alcohols to benzofurans and isochromenes can be performed 
using catalytic CpRuCl(PPh3)2 in the presence of an amine as base (Scheme 
14).[36] In a similar manner, benzofurans were also available from 
homopropargylic aromatic alcohols on using the bifunctional ruthenium catalyst 
[RuL2Cp(CH3CN)][PF6] (L = AZARYPHOS, see Scheme 7).[37] 

OH
n

R
cat CpRuCl(PPh3)2

amine, ∆
R

n = 0, 1 n = 0, Benzofurans (54-82%)
n = 1, Isochromenes (55-86%)

O
( )n

 
Scheme 14 
The proposed mechanism begins with the dissociation of the chloride to afford the 
starting Ru precatalyst, which upon coordination with the corresponding alkyne 
would give rise to the key vinylidene intermediate A (Scheme 15). Nucleophilic 
attack by the pendant alcohol to the vinylidene with concurrent removal of a 
proton by the amine would provide alkenyl ruthenium species B, which after 
protonolysis by the ammonium salt formed could provide the final benzofuran or 
isochromene with regeneration of the active catalyst (Scheme 15). 
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OH

OH

·

A
O

Ru

B

O

H +

RNH2RNH3
+

RNH3
+

RNH2

CpRuL2
+

CpRuL2Cl
H

H

H
Cl

-

Ru
Cp

L
L

Cp
L

L

L = PPh3
n = 0,1

( )n ( )n

( )n( )n

+

 
Scheme 15 
Seven-membered oxygen heterocycles, 3-benzoxepines, were accessible by a 
similar methodology involving the use of tungsten vinylidene complexes,[38] but 
catalytic osmium vinylidenes proved to be more efficient than tungsten, ruthenium 
and rhodium vinylidenes for the regioselective 7-endo heterocyclization of 
aromatic alkynols into benzoxepines (Scheme 16).[39] The better efficiency could 
be explained as being due to the more reducing character of osmium compared to 
ruthenium (Os more easily oxidized), which could result into cleaner osmium-
vinylidene formation (see pathway 2, Scheme 1) as compared to the formation of 
ruthemium-vinylidene via pathways 1 and 2 (Scheme 1), with possible more side 
reactions. 

O

Me
Me

Me

OH

Me

py, 90 ºC
68%

 cat [CpOs(py)3]PF6

py, 90 ºC
31%

 cat [CpRu(CH3CN)3]PF6
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Scheme 16 
The oxygen atom from epoxides can also act as a nucleophile in the 
cycloisomerization of epoxyalkynes to furans catalyzed by TpRuCl 
(PPh3)(CH3CN)2 in the presence of Et3N.[40] The initial ruthenium vinylidene 
species A would evolve to the ruthenium furylidene B by nucleophilic attack of 
the epoxide oxygen, which in the presence of base would afford ruthenium furyl 
anion C. Protonolysis would give rise to the final product and recovery of the 
catalytic ruthenium species (Scheme 17). 

O

R2

·
LClTpRu O

R1 R2

OLClTpRu

R1

R2 OLClTpRu

R1

R2

O

R1

R2

cat TpRuCl(PPh3)(CH3CN)2
Et3N (0.5 equiv)

1,2-dichloroethane
45-91%

A B C

Et3N Et3NH+

Et3N

Et3NH+

R1

 
Scheme 17 
The reaction of (o-ethynyl)phenyl epoxides in the presence of 
[TpRu(PPh3)(MeCN)2]PF6 gave different products depending on the epoxide 
substituents. 1',2'-Disubstituted epoxides gave 2-naphthol derivatives, whereas 
1',2',2'-trisubstituted epoxides produced 1-alkylidene-2-indanones in good yields. 
A possible mechanism for this process involves ketene-alkene intermediates A 
(Scheme 18), which are generated by an oxygen migration from epoxide to the 
terminal alkyne initiated by nucleophilic attack of the epoxide to a ruthenium 
vinylidene. Finally, a 6-endo-dig cyclization would afford 2-naphthols and 5-
endo-dig cyclization would give rise to 1-alkylidene-2-indanones (Scheme 
18).[41] The use of iodoalkynes such as 1-(2'-iodoethynylphenyl)-2-alkyloxiranes 
in DMF (Scheme 18, X = I) gave rise to 1-iodo-2-naphthols derived from the 
formation of the corresponding iodovinylidenes. Conversely, the use of benzene as 
solvent preferentially gave rise to 2-iodobenzo[d]oxepines due to the electrophilic 
activation of the alkyne by the ruthenium catalyst via a π-iodoalkyne species as 
intermediate.[42] 
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In contrast to oxygen, sulfur has been far less widely used as a nucleophile for 
addition to ruthenium vinylidenes. The formation of vinyl thioethers from the 
addition of thiols to alkynes catalyzed by binuclear ruthenium complexes 
Cp*Ru(µ-SR)2RuCp* (R = Et, i-Pr, t-Bu) and related complex Cp*Ru(µ1-C6F5)(µ-
S)(µ-SC6F5)RuCp* has been described.[43] 

2.2. N- and P-Nucleophiles 

Nitrogenated nucleophiles can also add to Cα of ruthenium vinylidenes. Although 
the addition of simple primary or secondary amines to metal vinylidene 
intermediates in a catalytic reaction has not been reported to date, probably due to 
catalyst deactivation by the amine, the TpRuCl(PPh3)2-catalyzed addition of N,N-
dialkylhydrazines to alkynes to give nitriles has been reported.[44] In recent years 
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Goossen and co-workers have described a range of customized protocols for the 
anti-Markovnikov addition of various N-nucleophilic amides, thioamides and 
imides to terminal alkynes to afford enamides, thioenamides and enimides in a 
chemo-, regio- and stereoselective manner (Scheme 19).  
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Scheme 19 
Tertiary (E)-enamides can be synthesized by the reaction of secondary amides 
with terminal alkynes in the presence of a catalyst system generated in situ from 
bis(2-methallyl)(cycloocta-1,5-diene)ruthenium(II) [(cod)Ru(2-methallyl)2], tri-n-
butylphosphine and 4-dimethylaminopyridine (Scheme 19, eq 1),[45] or by using 
a mixture of (RuCl3·3H2O), P(n-Bu)3, DMAP, K2CO3 and water (Scheme 19, eq 
2).[46] The stereoselectivity can be reversed in favor of the corresponding (Z)-
enamides by employing [(cod)Ru(2-methallyl)2], 
bis(dicyclohexylphosphino)methane (dcypm) and water instead of P(n-Bu)3 and 
DMAP (Scheme 19, eq 3),[45] or the Lewis acid ytterbium(III) triflate in 
combination with [(cod)Ru(2-methallyl)2] and 1,4-
bis(dicyclohexylphosphino)butane dcypb (Scheme 19, eq 4).[47] The latter 
conditions also proved to be efficient for the synthesis of secondary (E)-enamides 
from primary amides and terminal alkynes (Scheme 19, eq 5).[48] The previously 
described catalytic conditions for the addition of amides to alkynes were also 
modified to allow the stereoselective addition of thioamides (Scheme 19, eq 6 and 
7) [49] and imides to alkynes (Scheme 19, eq 8 and 9).[50] 
Mechanistic studies on the Ru-catalyzed hydroamidation of terminal alkynes 
support the involvement of ruthenium hydride and ruthenium vinylidene species 
as the key intermediates.[51] The proposed pathway starts with the initial 
oxidative addition of the amide N–H bond to the ruthenium complex to afford 
ruthenium hydride I followed by 1,2-insertion of a π-coordinated alkyne to vinyl-
ruthenium species II. Rearrangement to the vinylidene species III followed by 
nucleophilic attack of the amide and subsequent reductive elimination would give 
rise to the product (Scheme 20). 



19 

LnRu
R1 N

X
H

R2

R3

H
H

N
LnRu

R2
X

R1

N
Ln-1Ru

H

R2
R1

X

R3
N

LnRu

R2
R1

X

H
H

R3

Ln-1Ru C
R3

H

H

N
R2

R1

X

LnRu
H

R3

N
R2

R1

X

H

R1 N

X

R2

R3

L

LL

L

I

II

III

 
Scheme 20 
This methodology can be used in an intramolecular fashion to synthesize different 
nitrogen heterocycles. Ruthenium-catalyzed cycloisomerizations of aromatic 
homo- and bis-homopropargylic amines/amides to indoles, dihydroisoquinolines 
and dihydroquinolines have been developed. 
Grotjahn and co-workers used the same ruthenium catalyst as for anti-
Markovnikov hydration of terminal alkynes, [CpRuL2(CH3CN)][PF6] (L = 
AZARYPHOS, see Scheme 7),[25] to synthesize indoles from homopropargylic 
amines/amides in good yields.[37] The use of doubly ethynylated substrates in the 
presence of water gave rise to the product derived from cyclization to the indole 
plus anti-Markovnikov hydration of the second terminal alkyne (Scheme 21). 
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On using CpRuCl(PPh3)2 as catalyst in pyridine as solvent it was not only possible 
to synthesize indoles from aromatic homopropargylic amides but also 1,2-
dihydroisoquinolines and 1,4-dihydroquinoline from bis-homopropargylic amides 
(Scheme 22).[52] Surprisingly, cyclization of the latter amides under other typical 
conditions used for vinylidene formation, [RuCl2(p-cymene)]2/PBu3,[51] gave the 
2-methylindole, which indicates that cyclization did not proceed through a 
ruthenium vinylidene.[52] 
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These results may be interpreted in terms of the proposed mechanism shown in 
Scheme 23. Dissociation of Cl– from the starting Ru precatalyst is followed by 
coordination of the alkyne and subsequent rearrangement leads to Ru vinylidene 
intermediate I. This key intermediate may undergo nucleophilic attack by the 
pendant amine or amide with concurrent removal of a proton by pyridine to 
provide the alkenyl Ru species II. Finally, protonolysis by the pyridinium salt 
formed could provide the final indoles or dihydroisoquinolines, with regeneration 
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of the active catalytic species. A similar mechanistic proposal could be invoked 
for the preparation of dihydroquinolines from bis-homopropargylic amide. 
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Scheme 23 
Phosphorus nucleophiles can also be added to Cα of ruthenium vinylidenes. 
Dixneuf and co-workers reported the efficient Ru-catalyzed anti-Markovnikov cis 
hydrophosphination of propargyl alcohols to vinyl phosphines (Scheme 24).[53] 
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OH
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Scheme 24 

2.3. C-Nucleophiles 

Ruthenium vinylidenes can participate in the formation of C–C bonds by using 
carbon nucleophiles that are capable of adding to the electrophilic Cα to the metal. 
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Head-to-head dimerization of alkynes can be rationalized by the intramolecular 
attack of the Csp of one catalytic alkynylrutheniumvinylidene species I, generated 
in situ by treatment of one alkyne with catalytic amounts of a ruthenium complex, 
followed by acidic protonolysis of the intermediate enynyl II to afford the 
conjugated enyne (Scheme 25).[54] Depending on the nature of the ligands, 
complex II can rearrange to a cumulenyl ruthenium species III, which upon 
protonolysis gives the butatriene compound (Scheme 25).[55] 
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Scheme 25 
There have been several reports of ruthenium complexes that are able to catalyze 
the head-to-head dimerization of alkynes with different E/Z selectivities. These 
compounds include [TpRuCl(PPh3)2],[56] [TpRu(Mei-
Pr2P)C(Ph)=C(Ph)CCPh],[57] [Ru(ma)2(PPh3)2] (ma = maltolate, 
C6H5O3),[58] [(η5-C9H7)Ru(PPh3)2CCPh],[59] [RuCl2(PCy3)2=CHPh][60] and 
RuHXL2 [X = Cl or N(SiMe3)2, L = Pi-Pr3].[61] 
The stereoselectivity of the dimerization process can be modulated by changing 
the nature of the ligands in the catalysts. Yi and Liu reported that the use of 
[Cp*Ru(L)H3] (L = PCy3) led to dimerization of phenylacetylene to the Z isomer, 
whereas the system with  L = PMe3 gave the product of E configuration as the 
major isomer (Scheme 26).[62] More recently, Bianchini and co-workers 
described the synthesis of (Z)-enynes from aliphatic and aromatic alkynes with 
high regio- and stereoselectivity by using [RuH(CH3CN)(NP3)]OTf as the catalyst 
in both aqueous and organic media (Scheme 26).[63] 
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It was also possible to achieve cross-dimerization with (Z)-selectivity of two types 
of alkynes that possess significantly different properties with respect to the 
tautomerization between alkyne and vinylidene ligands. Cross-dimerization of 
arylacetylenes and silylacetylenes was reported to proceed on using 
vinylideneruthenium complexes bearing bulky and basic trialkyl phosphine 
ligands in the presence of methylpyrrolidine (Scheme 27).[64] 
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Scheme 27 
In addition to dimerization and cross-dimerization of alkynes, regio- and 
stereoselective polyaddition of alkynes catalyzed by ruthenium has also been 
described. Katayama and Ozawa reported the synthesis of poly(9,9-dioctyl-2,7-
fluorene ethynylene vinylene) having (Z)-vinylene units by polyaddition of 2,7-
diethynyl-9,9-dioctylfluorene catalyzed by RuCl2(=C=CHPh)(Pi-Pr3)2 (Scheme 
28).[65] 
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Scheme 28 
Alkenes are also capable of acting as nucleophiles and can add intramolecularly to 
ruthenium vinylidenes. Liu and co-workers described the 
TpRu(PPh3)(CH3CN)2PF6-catalyzed cycloisomerization of substituted ortho-
alkynylethynylstyrenes to give different naphthalenes or indenes depending on the 
nature of the alkene substituents (Scheme 29).[66] In all cases the reaction begins 
with the formation of the ruthenium vinylidene I. Subsequent 6-endo-dig (path a) 
or 5-endo-dig (path b) cyclization by nucleophilic attack of the alkene moiety 
would afford ruthenium species II and III, respectively. When monosubstituted 
iodoalkenes were used, only path a is operative, while with aryl monosubstituted 
alkenes the most favorable path was b. The substituted naphthalenes were 
obtained after a final rearrangement.[66a] Both mechanisms are operative when 
terminal disubstituted alkenes are used, with the naphthalene derivatives obtained 
from 6-endo-dig cyclization and indenes from 5-endo-dig cyclization.[66b] 
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Scheme 29 
Non-conjugated terminal 2-substituted-1,5-enynes also react through a 6-endo-dig 
cyclization to afford 1,3-cyclohexadienes via ruthenium vinylidene intermediates. 
Nishibayashi and co-workers reported that 2-substituted-1,5-enynes in the 
presence of 5% methanethiolate-bridged diruthenium complex [Cp*RuCl(µ2-
SMe)]2 and 10 mol% of NH4BF4 afforded the corresponding 1,3-cyclohexadienes 
in good yields (Scheme 30).[67] 
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Scheme 30 
Lin and co-workers described the 6-endo-dig cyclization of aromatic 1,5-enynes 
incorporating a cycle catalyzed by [CpRu(PPh3)2CH3CN)]+ using a mixture of 
CHCl3/MeOH to afford fused tricyclic rings with the incorporation of MeOH 
(Scheme 31).[68] Interestingly, the position of the final double bond varies 
depending on the size of the ring bearing the enyne. 
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2.4. B-Nucleophiles 

Ruthenium hydride pincer complex [Ru(PNP)(H)2(H2)] [PNP = 1,3-bis(di-tert-
butyl-phosphinomethyl)pyridine] and its borane analog [Ru(PNP)(H)2(HBpin)] 
(HBpin = pinacolborane) catalyze the hydroboration of terminal alkynes to give 
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selectively Z-vinylboronates in high yields (Scheme 32).[69] Mechanistic studies 
suggest a 1,2-hydrogen shift from a η2-alkyne to a vinylidene complex prior to the 
C–B bond formation. 
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Scheme 32 

3. Intramolecular Cyclizations 

Cyclizations can be initiated by a nucleophilic attack, e.g. by H2O or a carboxylic 
acid, to a catalytic ruthenium vinylidene followed by trapping with an 
electrophile. Lee and co-workers described the Ru-catalyzed hydrative cyclization 
of 1,5-enynes (Scheme 33) to give functionalized cyclopentanones.[70] Treatment 
of 1,5-enynes bearing an internal Michael acceptor with a catalytic amount of 
[Ru3Cl5(dppm)3]PF6 in the presence of water initially afforded the corresponding 
ruthenium vinylidene species. Nucleophilic anti-Markovnikov addition of water 
would afford an acylruthenium hydride, which through a hydroacylation or a 
Michael addition would give rise to the hydrated cycle cyclopentanone. 
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Cyclization of terminal alkynals to cycloalkenes with loss of a carbon atom 
through catalytic ruthenium vinylidenes using [CpRuMeCN3]PF6 as catalyst has 
been described by Saá and co-workers (Scheme 34).[71] These transformations 
would be initiated by the nucleophilic attack of acetate to the ruthenium 
vinylidene I to give complex II followed by an aldol-type condensation to afford 
the acyl ruthenium hydride III. Finally, decarbonylation to IV followed by 
reductive elimination would give rise to the final product, with the terminal 
carbon of the alkyne being the one that is lost as CO. The use of a catalyst bearing 
a bidentate ligand such as CpRu(dppm)Cl prevents the decarbonylative step and 
this process gives the corresponding α,β-unsaturated aldehyde (Scheme 34). 
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Scheme 34 
The same catalyst, [CpRuMeCN3]PF6, also performs the decarbonylative 
cyclization of 1,6-diynes to exo-alkylidenecyclopentanes through the initial 
addition of the carboxylic acid to a catalytic ruthenium vinylidene (Scheme 
35).[72] The acyclic vinylruthenium hydride II obtained by addition of acetic acid 
to the initially formed vinylidene would evolve through a [3+2]-type 
cycloaddition to a cyclic carbene ruthenium-hydride III. Reductive loss of AcOH 
from III would give the cyclic carbene IV, which undergoes another nucleophilic 
attack by AcOH to give the acyl ruthenium-hydride V. Reductive opening of 
ruthenacycle V followed by oxidative addition of AcOH with concomitant 
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decarbonylation of VI would lead to the ruthenium-hydride VII, which affords the 
observed alkylidenecyclopentane through a reductive elimination (Scheme 35). 
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Scheme35 
Variation of the electronic and steric nature of the ruthenium catalysts allow the 
complementary carboxylative cyclization of 1,6-diynes (Scheme 36).[73] Lee and 
co-workers described how a variety of carboxylic acids condense with 1,6-
terminal diynes in the presence of catalytic amounts of [Ru(p-cymene)Cl2]2, P(4-
F-C6H5)3 and 4-dimethylaminopyridine to give cyclohexylidene enol carboxylates 
with exclusive (E)-selectivity. The proposed mechanism involves the initial 
formation of a ruthenium vinylidene species I followed by intramolecular 
cyclization induced by the nucleophilic attack of the carboxylate anion to afford a 
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vinylruthenium species II. Final protonolysis furnished the product and turns the 
catalyst over. 
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4. Pericyclic Reactions 

The electronic π system of ruthenium vinylidenes can participate in pericyclic 
reactions such as electrocyclizations, cycloadditions and sigmatropic reactions to 
afford a variety of interesting poly(hetero)cyclic products. 

4.1. Electrocyclizations 

The first example of the participation of the electronic π system of a catalytic 
ruthenium vinylidene in a 6e– π electrocyclization was described by Merlic and 
Pauly. Treatment of conjugated terminal dienynes with catalytic amounts of 
RuCl2(p-cymene)PPh3 and NH4PF6 in refluxing dichloromethane afforded the 
aromatic benzene derivatives in good yields (Scheme 37).[74] The proposed 
mechanism begins with the formation of the conjugated ruthenium vinylidene I, 
which undergoes a 6e– π electrocyclization to the ruthenium carbene II. 
Subsequent β-hydride elimination followed by reductive elimination would 
generate the benzene derivative with recovery of the Ru catalyst. 
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Liu and co-workers reported a Ru-catalyzed 6-endo-dig cyclization of 3,5-dien-1-
ynes to rearranged toluene derivatives through a cascade process initiated by the 
formation of ruthenium vinylidenes (Scheme 38).[75] 
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Scheme 38 
The proposed mechanism for this transformation would start with a 6e– π 
electrocyclization of ruthenium vinylidene I to cyclic dienylcarbene II (Scheme 
39). A 1,2-alkyl shift in carbene II would afford the rearranged cationic 
intermediate III. Attack of the ruthenium center of species III at the remote 
benzyl carbon with a concomitant 1,2-phenyl shift would give rise to the 
cyclobutylruthenium species IV. Another structural rearrangement from a [1,5]-
sigmatropic alkyl shift would afford the cyclobutylruthenium V, which would 
ultimately give rise to the observed polycyclic toluene derivatives. 
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Scheme 39 
Similarly,  α-pyridones and 3(2H)-isoquinolones have been synthesized from 3-
en-5-ynyl nitrones and o-alkynylphenyl nitrones, respectively (Scheme 40).[76] 
The proposed mechanism involves an 8e– π-electrocyclization of the initially 
formed vinylidene I to form seven-membered heterocyclic species II, which can 
also be represented as its resonance structure, the pentadienyl cation II'. Cleavage 
of the N–O bond leads to species III, bearing both imine and ketene 
functionalities, which undergoes an 6e– π-electrocyclization to afford the final 
heterocyclic products. 
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Scheme 40 

4.2. Cycloadditions 

4.2.1. [2+2] Cycloadditions 

The π-system of ruthenium vinylidenes has been shown to participate in [2+2] 
cycloadditions with other unsaturated compounds. Murakami and co-workers 
described the formation of 1,3-dienes by reaction of phenylacetylenes with several 
olefins (Scheme 41, eq 1)[77] and the regio- and stereoselective alkenylation of 
pyridines, both catalyzed by the complex [CpRuCl(PPh3)2] (Scheme 41, eq 2).[78] 
In both cases the mechanism involves the initial formation of a ruthenium 
vinylidene I followed by a [2+2] cycloaddition with the double bond of either the 
alkene or the pyridine to afford ruthenacyclobutene species II. Finally, 
deprotonation and protonolysis would afford the corresponding product. 
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Scheme 41 
Recently, Slattery and Lynam reported that the formation of 2-styrylpyridine from 
terminal alkynes and pyridine could also be catalyzed by the cationic ruthenium 
complex [CpRuPy2(PPh3)]PF6 under far milder conditions than the corresponding 
reaction promoted by [CpRuCl(PPh3)2] (Scheme 42).[79] According to 
experimental and theoretical data, the mechanistic rationale would involve a 
catalytic ruthenium pyridylidene species without the formation of 
ruthenacyclobutenes. The initially formed ruthenium vinylidene I would undergo 
nucleophilic attack of the pyridine to give vinyl ruthenium II, which would evolve 
to pyridylidenes III and IV. C–N bond cleavage and protonation would give rise 
to vinylidene VI, which after C–C bond formation by pyridylidene migration to 
the α-carbon of the Ru-vinylidene would afford the 2-styrylpyridine with 
regeneration of the catalytic species. 
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4.2.2. [4+2] Cycloadditions 

Intermolecular Diels–Alder reactions between catalytic ruthenium vinylidenes I 
and arylacetylenes afforded 1-arylnaphthalenes (cyclodimerization) in moderate 
yields (Scheme 43).[80] Tautomerization of the initial cycloadduct, ruthenium 
carbene II, followed by reductive elimination gives rise to the final naphthalene 
with regeneration of the catalytic porphyrylruthenium complex. 
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Scheme 43 

4.3. [1,5] Sigmatropic Rearrangements 

Liu and co-workers reported the cycloisomerization of cis-3-en-1-ynes to 
cyclopentadiene derivatives through 1,5-sigmatropic hydrogen shifts of catalytic 
ruthenium vinylidene intermediates (Scheme 44).[81] 
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Scheme 44 
More recently, the cyclizations of 2-alkyl-1-ethynylbenzenes to 1-substituted-1H-
indenes and 1-indanones have also been developed (Scheme 45).[82] 

C5H11

MeO

OTBS

MeO

MeO

C5H11

MeO

O

[Ru]= TpRuPPh3(CH3CN)2PF6

toluene
105 ºC

[Ru]

toluene
105 ºC

[Ru]

63%

60%

 
Scheme 45 
In both cases the proposed mechanism would start with the formation of 
vinylidene I that evolves to the carbene II by a [1,5]-hydrogen shift. Subsequent 
6e– π-electrocyclization of II to ruthenacyclohexadiene III followed by reductive 
elimination would afford the final product (Scheme 46). 
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5. Vinylideneruthenium Catalysts in Metathesis 

Some ruthenium vinylidene complexes have been found to serve as good catalyst 
precursors for olefin metathesis.[83] Although the efficiency of the vinylidene 
complexes as initiators is lower than those of the well-known Grubbs’ alkylidene 
and indenylidene complexes, the polymerization rate is fast enough for practical 
use and, more importantly, they are readily prepared from conventional terminal 
alkynes. Another important feature is the rearrangement of the vinylidene ligand 
([M]=C=CHR) to an alkylidene moiety ([M]=CHR) in the presence of an olefin, a 
process that allows the application of vinylidenes as precursors for selective cross-
metathesis (CM), ring-closing metathesis (RCM) and ring-opening metathesis 
polymerization (ROMP).[84] Specifically, the use of vinylideneruthenium as a 
catalyst in metathesis has been subject of several recent reviews.[12c-e,k] 
Since the first use of [RuCl2(=C=CH2)(PCy3)2] as a catalyst for ROMP,[85] 
several analogs containing other phosphines (such as PPh3 and Pi-Pr3) and 
vinylidene ligands generated from various alkynes (such as tert-butylacetylene, 
phenylacetylene, ferrocenylacetylene, para-methoxyphenylacetylene) as well as 
TpRuCl(=C=CHPh)(PPh3) have been used to catalyze the ROMP of a variety of 
norbornene derivatives and in the RCM of α,ω-dienes (Scheme 47).[84,86] 
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Scheme 47 
Replacement of a phosphine ligand with an N-heterocyclic carbene (NHC) 
increases the stability and efficiency of the catalyst precursors, thus affording a 
second generation of monometallic ruthenium initiators. Several vinylidene 
complexes [RuCl2(=C=CHR)(PCy3)(NHC)] bearing mixed ligand sets made up of 
tricyclohexylphosphine (PCy3) and N-heterocyclic carbenes promoted several 
RCM and ROMP reactions (Scheme 48).[87] 
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Scheme 48 
More recently, Delaude and co-workers described the catalytic application in 
olefin metathesis of new homobimetallic ruthenium arene complexes bearing 
vinylidene ligands. The complex [(p-cymene)Ru(µ-Cl)3RuCl(=C=CHPh)(PCy3)] 
was synthesized and tested in metathesis reactions. Although its reaction with 
norbornene afforded high molecular weight polymers almost quantitatively, for 
the ROMP of cyclooctadiene it was necessary to use aluminum chloride as a 
cocatalyst. For the RCM of 1,6-dienes it was also necessary to use a cocatalyst, in 
this case phenylacetylene (Scheme 49).[88] Homobimetallic ruthenium arene 
complexes bearing NHC instead of phosphine ligands were also reported as 
catalysts for metathesis. This second generation of homobimetallic ruthenium 
arene complexes displayed an enhanced metathetical activity in both the ROMP of 
cyclooctene and the RCM of 1,6-dienes (Scheme 49).[89] 
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6. Ruthenium Allenylidenes in Catalysis 

Allenylidenes ligands are divalent radicals derived from allenes and their metal 
derivatives can be easily obtained from terminal propargylic alcohols by 
dehydration of initially formed M-hydroxyvinylidenes.[90] Since the first report 
of the use of transition metal allenylidene complexes in catalytic reactions by 
Trost,[91] significant progress in this field has been made.[12e,j,k,92] The 
reactivities of metal allenylidene complexes are rationalized by considering the 
electrophilicity of Cα and Cγ and the nucleophilicity of Cβ of the M=C=C=CR2 
moiety. 
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6.1. Nucleophilic Addition to Allenylidenes Cγ  

The ability shown by transition metal allenylidenes to undergo nucleophilic 
additions at the Cγ atom of the cumulenic chain has been used to develop efficient 
catalytic processes for the direct substitution of the hydroxyl group in propargylic 
alcohols.[92a] These studies were initiated[93] and further developed by 
Nishibayashi, Uemura and Hidai using as catalyst precursors the thiolate-bridged 
diruthenium(III) complexes [Cp*RuCl(µ-SR)]2 (R = Me, Et, n-Pr, i-Pr) and [Cp* 
RuCl(µ-SR)2-RuCp*(OH)2]OTf. The proposed mechanism requires the generation 
of allenylidene II by dehydration of the initially formed vinylidene I by treatment 
of the corresponding propargylic alcohol with the diruthenium complex in the 
presence of NH4BF4. Nucleophilic attack at the Cγ of the allenylidene II would 
afford vinylidene species III, which after tautomerization to the η2-coordinated 
alkyne-ruthenium IV would afford the propargylic-substituted product with 
recovery of the catalytic species (Scheme 50). 
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Scheme 50 
The nucleophilic substitution of the hydroxy group in propargylic alcohols with a 
variety of heteroatom-centered nucleophiles, such as alcohols, amines, amides and 
diphenylphosphine oxide, to give the corresponding propargylic-substituted 
products with complete selectivity has been conveniently exploited.[94] One 
interesting modification of this methodology arises from the reaction of 1-
cyclopropyl-2-propyn-1-ols with nitrogen- and oxygen-centered nucleophiles such 
as anilines and water to afford functionalized conjugated enynes (Scheme 51).[95] 
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Scheme 51 
Nishibayashi and Sakata recently described the Ru-catalyzed [3+2] cycloaddition 
of ethynylcyclopropanes bearing two carboxy groups at the homopropargylic 
position with aldehydes and aldimines to afford 2-ethynyltetrahydrofurans and 
pyrrolidines (Scheme 52).[96] The proposed mechanism requires the formation of 
the ruthenium allenylidene species II by isomerization of the initially formed 
vinylidene I. Nucleophilic attack of species II to the aldehyde or aldimine, which 
are activated by BF3·OEt2, would afford allenylidene III. Final nucleophilic attack 
on the Cγ by the oxygen or nitrogen followed by tautomerization of the vinylidene 
species IV would give rise to the corresponding 2-ethynyltetrahydrofurans and 
pyrrolidines, respectively. 
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Scheme 52 
The propargylic substitution with carbon-centered nucleophiles such as acetone 
has been reported to give γ-ketoalkynes,[97] heteroaromatic compounds such as 
furans, thiophenes, pyrroles and indoles and electron-rich arenes such as anilines, 
1,3,5-trimethoxybenzene, 3,5-dimethoxylacetanilide and azulene.[98] The 
asymmetric version of the propargylic alcohol substitution with acetone[99] and 
hetero- and aromatic compounds[100] was achieved using a diruthenium complex 
incorporating a bridging chiral thiolate ligand (Scheme 53). The chiral induction 
of the process is believed to be determined by favorable π−π interactions between 
one of the aromatic rings of the thiolate ligand and the aryl substituent of the 
alkynol in the corresponding allenylidene intermediate. 
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Scheme 53 
The enantioselective propargylic alkylation of propargylic alcohols with 
aldehydes[101] or β-ketoesters[102] has recently been accomplished by 
cooperative catalytic reactions using a thiolate-bridged diruthenium complex and a 
chiral organocatalyst in the former case or a chiral copper complex in the latter. In 
both cases, the ruthenium complex activates the propargylic alcohols to afford the 
corresponding ruthenium allenylidene while aldehydes and β-ketoesters are 
activated by the chiral organocatalyst and the chiral copper complex, respectively 
(Scheme 54). 
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Scheme 54 

6.2. Nucleophilic Addition to Allenylidenes Cα  

The electrophilic Cα of allenylidenes is prone to add nucleophiles like ruthenium 
vinylidenes. The unsaturated 16e– complex [Ru(η3-2-C3H4Me)(CO)(dppf)][SbF6] 
efficiently catalyzes the isomerization of both tertiary and secondary terminal 
propargylic alcohols into the corresponding enals or α,β-unsaturated methyl 
ketones (Scheme 55).[103] The proposed mechanism involves the initial 
formation of the ruthenium vinylidene I, which evolves to the corresponding 
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allenylidene II if the propargylic alcohol does not bear a hydrogen in the β-
position to the hydroxy group. Nucleophilic addition of water to the allenylidene 
Cα followed by tautomerization would afford acyl-ruthenium species III, which 
after protonolysis would give rise to the corresponding enal. Conversely, if the 
propargylic alcohol bears a hydrogen in the β-position to the hydroxy group, 
vinylidene I would undergo an elimination to give the new conjugated vinylidene 
species IV. Tautomerization to the corresponding Ru-alkyne complex V followed 
by Markovnikov hydration would afford the corresponding α,β-unsaturated 
methyl ketone. 
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Scheme 55 
If the same reaction is performed in the presence of an enolizable ketone, the 
initially formed enal can undergo an aldol-type condensation to afford the 
corresponding dienone, which can formally be regarded as a nucleophilic addition 
of a carbon-centered nucleophile to the Cα of an allenylidene (Scheme 56).[104] 
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Scheme 56 

6.3. Pericyclic Reactions with Ruthenium Allenylidenes 

The π system of ruthenium allenylidenes can also participate in pericyclic 
reactions such as cycloadditions and ene reactions to afford functionalized 
polycyclic products. 

6.3.1. Cycloadditions 

Thiolate-bridged diruthenium complexes catalyze the [3+3] cycloaddition reaction 
between propargylic alcohols and cyclic 1,3-dicarbonyl compounds to afford 
4,6,7,8-tetrahydrochromen-5-ones or 4H-cyclopenta[b]pyran-5-ones[105] and 
with 2-naphthols or phenols to afford 1H-naphtho[2,1-b]pyrans and 4H-1-
benzopyrans, respectively.[106] This cycloaddition is considered to proceed by 
stepwise propargylation and intramolecular cyclization (carbon and oxygen 
nucleophile additions) reactions, where ruthenium allenylidene and vinylidene 
complexes are the key intermediates (Scheme 57). Enantioselective ruthenium-
catalyzed [3+3] cycloaddition of propargylic alcohols with 2-naphthols has also 
been described.[107] 
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Scheme 57 

6.3.2. Allenylidene-ene Reactions 

Inter- and intramolecular additions of alkenes and dienes to propargylic alcohols 
catalyzed by thiolate-bridged diruthenium complexes have been described. The 
processes, a kind of allenylidene-ene reaction, generate 1,5-enynes and dienynes 
by reaction of propargylic alcohols with 2-arylpropenes[108] and 1,3-conjugated 
dienes,[109] respectively. The intramolecular version of this reaction has been 
developed to give diastereo-[108,110] or enantioselective syn-substituted 
chromanes (Scheme 58).[111] Recently, the results of DFT calculations indicated 
that nucleophilic attack of the olefinic π-electrons on a carbocationic ruthenium-
alkynyl [Ru]–C≡C–C+HR complex, a resonance structure of the allenylidene 
intermediate [Ru]+=C=C=CHR, is clearly involved in the catalytic cycle.[112] 
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Lin and co-workers described the formation of 5,9-methanobenzoannulenes by 
[(CpRu(PPh3)2(CH3CN)]+-catalyzed allenylidene-ene reactions of ortho-propenyl 
and ortho-butenylphenyl propargyl alcohols. The processes probably involve the 
initial formation of aromatic vinylidenes as intermediates and these undergo 
nucleophilic attack by the pendant olefinic double bonds and final trapping with 
MeOH (Scheme 59).[68] Similar cyclizations of enynes containing thioether or 
ether linkages have recently been described.[113] 
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6.4. Allenylideneruthenium Catalysts in Metathesis 

Allenylideneruthenium complexes, which are readily available and easy to handle, 
have become an alternative to the alkylideneruthenium complexes (the Grubbs 
catalyst family) in alkene metathesis.[12b,e,j,k,92b] The first catalytic applications 
of allenylidene complexes in alkene metathesis were described by Dixneuf’s and 
Fürstner’s groups, who used several well-defined 18-electron cationic ruthenium 
allenylidene complexes [RuCl(=C=C=CAr2)(η6-p-cymene)PR3)][X] (A, Figure 
1).[114] Since then, electronic modifications on these cationic complexes have 
been studied thoroughly.[115] The following general trends were observed: (i) the 
activity increases with the electron richness and size of the phosphine ligand in the 
order PCy3>Pi-Pr3>>PPh3; (ii) the nature of the counteranion of these ionic 
precursors has a dramatic influence on the catalytic activity, which increases in the 
order TfO–>>PF6

–≈BF4
–; (iii) several 3,3-diarylallenylidene ligands proved to be 

efficient, but the most simple 3,3-diphenylallenylideneruthenium derivatives led to 
the best performances. Modifications in the initial 18-electron cationic 
allenylidene complexes by using a chelate η6-arene, η1-carbene allenylidene 
ruthenium complex generated in situ (B, Figure 1) showed high activity and 
selectivity in some RCM reactions, with a strong influence of the diene and the 
solvent.[116] 
Nolan and co-workers reported RCM reactions of neutral allenylideneruthenium 
complexes with a 16-electron metal center configuration, 
(PCy3)2Cl2Ru(=C=C=CPh2) (C, Figure 1), and its second generation analogs 
bearing an N-heterocyclic carbene ligand, (PCy3)(IMes)Cl2Ru(=C=C=CPh2) (D, 
Figure 1).[117] Other ligand modifications and their influence in RCM reaction 
were investigated more recently.[118] 
Cationic allenylideneruthenium complexes with a 16-electron metal center 
[RuCl(=C=C=CPh2)(PCy3)(DMSO)2][OTf] and with 18-electron neutral 
[RuCl2(=C=C=CPh2)(PCy3)2(DMSO)] and [RuCl2(=C=C=CPh2)(PCy3) (DMSO)2] 
and cationic [RuCl(=C=C=CPh2)(PCy3)2(DMSO)2][OTf] systems were tested in 
ROMP of cyclic olefins, but their efficiencies were found to be lower than those 
obtained with catalysts of type A in Figure 1.[119] 
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Homobimetallic ruthenium allenylidene complex [(p-cymene)Ru(µ-
Cl)3RuCl(PCy3)(η2-C2H4)] (E, Figure 1) was synthesized and tested in RCM 
reactions.[120] However, later investigations revealed that the final catalysts 
formed were actually phenylindenylideneruthenium complexes rather than 
allenylidene analogs.[121] This latter homobimetallic ruthenium allenylidene 
complex was finally synthesized along with other ruthenium homobimetallic 
complexes and they were tested as catalysts in olefin metathesis.[122] 
Heterobimetallic allenylidene titanium-ruthenium complexes (F, Figure 1) have 
also shown catalytic activity in RCM reactions.[123] 
Biocompatible water-soluble ruthenium allenylidenes (G, Figure 1)[124] and 
complexes of type A in ionic liquids have also been described.[115a,125] 
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7. Conclusion 

The formation of catalytic ruthenium vinylidenes and allenylidenes has been 
revealed as one of the most powerful methods for the activation of compounds 
bearing terminal alkynes and propargylic alcohols, respectively. The chemical 
properties of the catalytic ruthenium vinylidenes and allenylidenes generated in 
situ change the reactivity of free alkynes, thus allowing new and selective 
reactions to be carried out with atom economy and significantly increased 
complexity. This reactivity hinges on the electrophilic character of the Cα in 
vinylidenes as well as Cα and Cγ of allenylidenes and the capacity of the 
electronic π-system of both metallic intermediates to participate in pericyclic 
reactions. 
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