139 research outputs found

    The translation and validation of the smartphone use questionnaire (SUQ) into the Malay language

    Get PDF
    Interruptions caused by frequent smartphone use steals attention away from daily activities, bringing serious implications onto an individual’s health, safety and education. Smartphone Use Questionnaire (SUQ) is a 20-item questionnaire developed to assess the pattern of smartphone use and its effect on attention. This study was done to translate and validate the Malay-language version of the SUQ and to measure the psychometric properties of the Malay-version SUQ to justify its use in Malaysia. A forward and back-translation was done by four individuals, who were three physicians and one linguist. Content and face validity was done involving three experts who were a linguist, psychiatrist and epidemiologist. Psychometric testing was conducted on a sample of 195 individuals proficient in the Malay language. A construct validity test was performed using factor analysis and the internal reliability was tested by calculating for the Cronbach’s Alpha. The age range of the sample was 13-59 years, most of which were female and of the Malay race. Using principal component analysis with direct oblimin rotation, the factor analysis extracted two components similar to the original study: General Use and Absent-Minded Use. However, question number 20 was grouped into General Use component, whereas in the original study it was under the Absent-Minded Use component. The Cronbach’s Alpha for the obtained components was 0.884 and 0.927, respectively. This study found that the Malay-version SUQ was a valid and reliable instrument for use in Malaysia in assessing inattention associated with smartphone use

    Collective-coordinate analysis of inhomogeneous nonlinear Klein-Gordon field theory

    Full text link
    Two different sets of collective-coordinate equations for solitary solutions of Nonlinear Klein-Gordon (NKG) model is introduced. The collective-coordinate equations are derived using different approaches for adding the inhomogeneities as exrernal potentials to the soliton equation of motion. Interaction of the NKG field with a local inhomogeneity like a delta function potential wall and also delta function potential well is investigated using the presented collective-coordinate equations and the results of two different models are compared. Most of the characters of the interaction are derived analytically. Analytical results are also compared with the results of numerical simulations.Comment: 16 pages, 8 figures. Accepted for publication in Volume 43 of the Brazilian Journal of Physic

    Noisy-threshold control of cell death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies.</p> <p>Results</p> <p>Here, I show that these typical responses arise naturally from the interplay of intracellular variability with a threshold-based control mechanism that detects cellular changes in addition to just the cellular state itself. Implementation of this mechanism in a quantitative model for T-cell apoptosis, a prototypical example of programmed cell death, captures with exceptional accuracy experimental observations for different expression levels of the oncogene Bcl-x<sub>L </sub>and directly links adaptation with noise in an ATP threshold below which cells die.</p> <p>Conclusions</p> <p>These results indicate that oncogenes like Bcl-x<sub>L</sub>, besides regulating absolute death values, can have a novel role as active controllers of cell-cell variability and the extent of adaptation.</p

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma

    Get PDF
    Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55–60%) and calcium-dependent (40–45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event

    “Where, O Death, Is Thy Sting?” A Brief Review of Apoptosis Biology

    Get PDF
    Apoptosis was a term introduced in 1972 to distinguish a mode of cell death with characteristic morphology and apparently regulated, endogenously driven mechanisms. The effector processes responsible for apoptosis are now mostly well known, involving activation of caspases and Bcl2 family members in response to a wide variety of physiological and injury-induced signals. The factors that lead of the decision to activate apoptosis as opposed to adaptive responses to such signals (e.g. autophagy, cycle arrest, protein synthesis shutoff) are less well understood, but the intranuclear Promyelocytic Leukaemia Body (PML body) may create a local microenvironment in which the audit of DNA damage may occur, informed by the extent of the damage, the adequacy of its repair and other aspects of cell status

    Intrinsic Order and Disorder in the Bcl-2 Member Harakiri: Insights into Its Proapoptotic Activity

    Get PDF
    Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-xL and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual α-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-xL and Bcl-2. The structural data in water indicate that the α-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric α-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works

    Intrinsic Order and Disorder in the Bcl-2 Member Harakiri: Insights into Its Proapoptotic Activity

    Get PDF
    Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-xL and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual α-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-xL and Bcl-2. The structural data in water indicate that the α-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric α-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works

    ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death

    Get PDF
    Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway
    corecore