182 research outputs found

    On the characteristic connection of gwistor space

    Get PDF
    We give a brief presentation of gwistor space, which is a new concept from G_2 geometry. Then we compute the characteristic torsion T^c of the gwistor space of an oriented Riemannian 4-manifold with constant sectional curvature k and deduce the condition under which T^c is \nabla^c-parallel; this allows for the classification of the G_2 structure with torsion and the characteristic holonomy according to known references. The case with the Einstein base manifold is envisaged.Comment: Many changes since first version, including title; Central European Journal of Mathematics, 201

    A QCD Sum Rule Approach to the s→dÎłs\to d\gamma Contribution to the Î©âˆ’â†’Îžâˆ’Îł\Omega^-\to \Xi^-\gamma Radiative Decay

    Full text link
    QCD sum rules are used to calculate the contribution of short-distance single-quark transition s→dÎłs\rightarrow d \gamma, to the amplitudes of the hyperon radiative decay, Î©âˆ’â†’Îžâˆ’Îł\Omega^-\rightarrow \Xi^-\gamma. We re-evaluate the Wilson coefficient of the effective operator responsible for this transition. We obtain a branching ratio which is comparable to the unitarity limit.Comment: 15 pages, Revtex, 13 figures available as a uuencoded, gz-compressed ps fil

    Long Distance Contribution to s→dÎłs \to d\gamma and Implications for Î©âˆ’â†’Îžâˆ’Îł,Bs→Bd∗γ\Omega^-\to \Xi ^-\gamma, B_s \to B_d^*\gamma and b→sÎłb \to s\gamma

    Full text link
    We estimate the long distance (LD) contribution to the magnetic part of the s→dÎłs \to d\gamma transition using the Vector Meson Dominance approximation (V=ρ,ω,ψi)(V=\rho,\omega,\psi_i). We find that this contribution may be significantly larger than the short distance (SD) contribution to s→dÎłs \to d\gamma and could possibly saturate the present experimental upper bound on the Î©âˆ’â†’Îžâˆ’Îł\Omega^-\to \Xi^-\gamma decay rate, Î“Î©âˆ’â†’Îžâˆ’ÎłMAX≃3.7×10−9\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}eV. For the decay Bs→Bd∗γB_s \to B^*_d\gamma, which is driven by s→dÎłs \to d\gamma as well, we obtain an upper bound on the branching ratio BR(Bs→Bd∗γ)<3×10−8BR(B_s \to B_d^*\gamma)<3\times10^{-8} from Î“Î©âˆ’â†’Îžâˆ’ÎłMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}. Barring the possibility that the Quantum Chromodynamics coefficient a2(ms)a_2(m_s) be much smaller than 1, Î“Î©âˆ’â†’Îžâˆ’ÎłMAX\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} also implies the approximate relation 23∑igψi2(0)mψi2≃12gρ2(0)mρ2+16gω2(0)mω2\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}. This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to b→sÎłb \to s\gamma are small. We find that these amount to an increase of (4±2)%(4\pm2)\% in the magnitude of the b→sÎłb \to s \gamma transition amplitude, relative to the SD contribution alone.Comment: 16 pages, LaTeX fil

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset
    • 

    corecore