7 research outputs found

    Mechanical Performance of Polylactic Acid from Sustainable Screw-Based 3D Printing

    Get PDF
    Screw-extrusion-based 3D printing or fused granular fabrication (FGF) is a less widespread variant of filament-based 3D printing for polymers. An FGF printer can be fed directly from polymer granules for improved sustainability. Shorter manufacturing routes and the potential of using recycled pellets from waste plastics are key features of FGF in the circular economy framework. A modified version of a standard Prusa i3 plus printer, which was equipped with a Mahor screw extruder, is used to test the mechanical performance of polylactic acid (PLA) processed with different layer infill and printing speed. Rheological and thermal analyses are carried out to characterise the material. The energy consumption of the FGF printer was measured during the fabrication of Dumbbell specimens. Tensile test results are consistent with other investigations presented in the literature. A higher printing speed promotes FGF eco-efficiency without a detrimental effect on the material strength, whereas lower printing speed should be preferred for increased material stiffness

    Bibliographic mapping of post-consumer plastic waste based on hierarchical circular principles across the system perspective

    No full text
    corecore