6,823 research outputs found

    Cadaveric Spinal Surgery Simulation: A Comparison of Cadaver Types

    Get PDF
    Study Design: Single-blinded study. Objective: To assess the suitability of three types of cadaver for simulating pedicle screw insertion and establish if there is an ideal. Methods: Three types of cadaver-Thiel-embalmed, Crosado-embalmed, and formaldehyde-embalmed-were draped and the spines exposed. Experienced surgeons were asked to place pedicle screws in each cadaver and give written questionnaire feedback using a modified Likert scale. Soft tissue and bony properties were assessed, along with the role of simulation in spinal surgery training. Results: The Thiel cadaver rated highest for soft tissue feel and appearance with a median score of 6 for both (range 2 to 7). The Crosado cadaver rated highest for bony feel, with a median score of 6 (range 2 to 7). The formaldehyde cadaver rated lowest for all categories with median scores of 2, 2.5, and 3.5, respectively. All surgeons felt pedicle screw insertion should be learned in a simulated setting using human cadavers. Conclusion: Thiel and Crosado cadavers both offered lifelike simulation of pedicle screw insertion, with each having advantages depending on whether the focus is on soft tissue approach or technical aspects of bony screw insertion. Both cadaver types offer the advantage of long life span, unlike fresh frozen tissue, which means cadavers can be used multiple times, thus reducing the costs

    The role of Schizosaccharomyces pombe SUMO ligases in genome stability

    Get PDF
    SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins

    Nuclei in Strongly Magnetised Neutron Star Crusts

    Full text link
    We discuss the ground state properties of matter in outer and inner crusts of neutron stars under the influence of strong magnetic fields. In particular, we demonstrate the effects of Landau quantization of electrons on compositions of neutron star crusts. First we revisit the sequence of nuclei and the equation of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS) model in the presence of strong magnetic fields and most recent versions of the theoretical and experimental nuclear mass tables. Next we deal with nuclei in the inner crust. Nuclei which are arranged in a lattice, are immersed in a nucleonic gas as well as a uniform background of electrons in the inner crust. The Wigner-Seitz approximation is adopted in this calculation and each lattice volume is replaced by a spherical cell. The coexistence of two phases of nuclear matter - liquid and gas, is considered in this case. We obtain the equilibrium nucleus corresponding to each baryon density by minimizing the free energy of the cell. We perform this calculation using Skyrme nucleon-nucleon interaction with different parameter sets. We find nuclei with larger mass and charge numbers in the inner crust in the presence of strong magnetic fields than those of the zero field case for all nucleon-nucleon interactions considered here. However, SLy4 interaction has dramatic effects on the proton fraction as well as masses and charges of nuclei. This may be attributed to the behaviour of symmetry energy with density in the sub-saturation density regime. Further we discuss the implications of our results to shear mode oscillations of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South Africa in November, 2011 and to be published in a book by Springer Verla

    Semi-Markov Graph Dynamics

    Get PDF
    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs.Comment: 25 pages, 4 figures, submitted to PLoS-ON

    Ising model for distribution networks

    Full text link
    An elementary Ising spin model is proposed for demonstrating cascading failures (break-downs, blackouts, collapses, avalanches, ...) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidary environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of the model on (mainly) scale-free networks, are supplemented with analytic mean-field approximations to the geometrical random field fluctuations and the thermal spin fluctuations. The role of hubs versus poorly connected nodes in initiating the breakdown of network activity is illustrated and related to model parameters

    Organic aerosol formation downwind from the Deepwater Horizon oil spill.

    Get PDF
    A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb

    Deciphering Network Community Structure by Surprise

    Get PDF
    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks.Comment: 7 pages, 5 figure
    corecore