6,874 research outputs found
Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage
The rad2 mutant of Schizosaccharomyces pombe is sensitive to UV irradiation and deficient in the repair of UV damage. In addition, it has a very high degree of chromosome loss and/or nondisjunction. We have cloned the rad2 gene and have shown it to be a member of the Saccharomyces cerevisiae RAD2/S. pombe rad13/human XPG family. Using degenerate PCR, we have cloned the human homolog of the rad2 gene. Human cDNA has 55% amino acid sequence identity to the rad2 gene and is able to complement the UV sensitivity of the rad2 null mutant. We have thus isolated a novel human gene which is likely to be involved both in controlling the fidelity of chromosome segregation and in the repair of UV-induced DNA damage. Its involvement in two fundamental processes for maintaining chromosomal integrity suggests that it is likely to be an important component of cancer avoidance mechanisms
Cadaveric Spinal Surgery Simulation: A Comparison of Cadaver Types
Study Design: Single-blinded study. Objective: To assess the suitability of three types of cadaver for simulating pedicle screw insertion and establish if there is an ideal. Methods: Three types of cadaver-Thiel-embalmed, Crosado-embalmed, and formaldehyde-embalmed-were draped and the spines exposed. Experienced surgeons were asked to place pedicle screws in each cadaver and give written questionnaire feedback using a modified Likert scale. Soft tissue and bony properties were assessed, along with the role of simulation in spinal surgery training. Results: The Thiel cadaver rated highest for soft tissue feel and appearance with a median score of 6 for both (range 2 to 7). The Crosado cadaver rated highest for bony feel, with a median score of 6 (range 2 to 7). The formaldehyde cadaver rated lowest for all categories with median scores of 2, 2.5, and 3.5, respectively. All surgeons felt pedicle screw insertion should be learned in a simulated setting using human cadavers. Conclusion: Thiel and Crosado cadavers both offered lifelike simulation of pedicle screw insertion, with each having advantages depending on whether the focus is on soft tissue approach or technical aspects of bony screw insertion. Both cadaver types offer the advantage of long life span, unlike fresh frozen tissue, which means cadavers can be used multiple times, thus reducing the costs
Evolutionary conservation of excision repair in Schizosaccharomyces pombe: Evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene
Cells mutated at the rad13 locus in the fission yeast, Schizosaccharomyces pombe are deficient in excision-repair of UV damage. We have cloned the S.pombe rad13 gene by its ability to complement the UV sensitivity of a rad13 mutant. The gene is not essential for cell proliferation. Sequence analysis of the cloned gene revealed an open reading-frame of 1113 amino acids with structural homology to the RAD2 gene of the distantly related Saccharomyces cerevisiae. The sequence similarity is confined to three domains, two close to the N-terminus of the encoded protein, the third being close to the C-terminus. The central region of about 500 amino acids shows little similarity between the two organisms. The first and third domains are also found in a related yet distinct pair of homologous S.pombe/S.cerevisiae DNA repair genes (rad2/YKL510), which have only a very short region between these two conserved domains. Using the polymerase chain reaction with degenerate primers, we have isolated fragments from a gene homologous to rad13/RAD2 from Aspergillus nidulans. These findings define new functional domains involved in excision-repair, as well as identifying a conserved family of genes related to RAD2
The role of Schizosaccharomyces pombe SUMO ligases in genome stability
SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins
Ising model for distribution networks
An elementary Ising spin model is proposed for demonstrating cascading
failures (break-downs, blackouts, collapses, avalanches, ...) that can occur in
realistic networks for distribution and delivery by suppliers to consumers. A
ferromagnetic Hamiltonian with quenched random fields results from policies
that maximize the gap between demand and delivery. Such policies can arise in a
competitive market where firms artificially create new demand, or in a solidary
environment where too high a demand cannot reasonably be met. Network failure
in the context of a policy of solidarity is possible when an initially active
state becomes metastable and decays to a stable inactive state. We explore the
characteristics of the demand and delivery, as well as the topological
properties, which make the distribution network susceptible of failure. An
effective temperature is defined, which governs the strength of the activity
fluctuations which can induce a collapse. Numerical results, obtained by Monte
Carlo simulations of the model on (mainly) scale-free networks, are
supplemented with analytic mean-field approximations to the geometrical random
field fluctuations and the thermal spin fluctuations. The role of hubs versus
poorly connected nodes in initiating the breakdown of network activity is
illustrated and related to model parameters
Semi-Markov Graph Dynamics
In this paper, we outline a model of graph (or network) dynamics based on two
ingredients. The first ingredient is a Markov chain on the space of possible
graphs. The second ingredient is a semi-Markov counting process of renewal
type. The model consists in subordinating the Markov chain to the semi-Markov
counting process. In simple words, this means that the chain transitions occur
at random time instants called epochs. The model is quite rich and its possible
connections with algebraic geometry are briefly discussed. Moreover, for the
sake of simplicity, we focus on the space of undirected graphs with a fixed
number of nodes. However, in an example, we present an interbank market model
where it is meaningful to use directed graphs or even weighted graphs.Comment: 25 pages, 4 figures, submitted to PLoS-ON
Nuclei in Strongly Magnetised Neutron Star Crusts
We discuss the ground state properties of matter in outer and inner crusts of
neutron stars under the influence of strong magnetic fields. In particular, we
demonstrate the effects of Landau quantization of electrons on compositions of
neutron star crusts. First we revisit the sequence of nuclei and the equation
of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS)
model in the presence of strong magnetic fields and most recent versions of the
theoretical and experimental nuclear mass tables. Next we deal with nuclei in
the inner crust. Nuclei which are arranged in a lattice, are immersed in a
nucleonic gas as well as a uniform background of electrons in the inner crust.
The Wigner-Seitz approximation is adopted in this calculation and each lattice
volume is replaced by a spherical cell. The coexistence of two phases of
nuclear matter - liquid and gas, is considered in this case. We obtain the
equilibrium nucleus corresponding to each baryon density by minimizing the free
energy of the cell. We perform this calculation using Skyrme nucleon-nucleon
interaction with different parameter sets. We find nuclei with larger mass and
charge numbers in the inner crust in the presence of strong magnetic fields
than those of the zero field case for all nucleon-nucleon interactions
considered here. However, SLy4 interaction has dramatic effects on the proton
fraction as well as masses and charges of nuclei. This may be attributed to the
behaviour of symmetry energy with density in the sub-saturation density regime.
Further we discuss the implications of our results to shear mode oscillations
of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South
Africa in November, 2011 and to be published in a book by Springer Verla
SUMO chain formation is required for response to replication arrest in S. pombe
SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb
Organic aerosol formation downwind from the Deepwater Horizon oil spill.
A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons
Message-Passing Methods for Complex Contagions
Message-passing methods provide a powerful approach for calculating the
expected size of cascades either on random networks (e.g., drawn from a
configuration-model ensemble or its generalizations) asymptotically as the
number of nodes becomes infinite or on specific finite-size networks. We
review the message-passing approach and show how to derive it for
configuration-model networks using the methods of (Dhar et al., 1997) and
(Gleeson, 2008). Using this approach, we explain for such networks how to
determine an analytical expression for a "cascade condition", which determines
whether a global cascade will occur. We extend this approach to the
message-passing methods for specific finite-size networks (Shrestha and Moore,
2014; Lokhov et al., 2015), and we derive a generalized cascade condition.
Throughout this chapter, we illustrate these ideas using the Watts threshold
model.Comment: 14 pages, 3 figure
- …
