2,865 research outputs found

    Candida tropicalis biofilms matrix - involvement on its resistance to amphotericin B

    Get PDF
    Candida tropicalis has emerged as one of the most prevalent fungal pathogens, and its ability to form biofilms has been considered one of the most important virulence factors, since they represent high tolerance to antifungal agents. However, the mechanisms of biofilm resistance to antifungal agents remain poorly understood. Thus, the main goal of this study was to infer about the ability of amphotericin B (AMB) to control and combat C. tropicalis biofilms. Additionally, it was also intended to determine the influence of matrix components in bio- film resistance. AMB was unable to totally prevent biofilm formation and to eradicate C. tropicalis preformed biofilms. Moreover, AMB led to a significant increase of the biofilm production due to an augment of the total protein and carbohydrate contents of the matrix. The C. tropicalis biofilm matrix assumes an important role on its resistance to AMB.This work was supported by the Programa Operacional, Fatores de competitividade and by national funds through Fundacao para a Ciencia e a Tecnologia on the scope of the projects FCT PTDC/SAU-MIC/119069/2010, RECI/EBB-EBI/0179/2012, and PEst-OE/EQB/LA0023/2013. The authors also thank the Project "BioHealth - Biotechnology and Bioengineering approaches to improve health quality; Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER

    Recent developments in chemical reactivity of N,N-dimethylenamino ketones as synthons for various heterocycles

    Get PDF
    The current review presents recent progress in the utility of N,N-dimethyl enaminones as building blocks for a diverse range of acyclic, carbocyclic, five- and six-membered heterocyclic a broad range of heterocyclic and fused heterocyclic derivatives. Most importantly, these N,N-dimethyl analogues have proven to be of biological interest and provide an access to new class of biologically active heterocyclic compounds for biomedical applications. All of these topics are drawn from the recent literature till 2016

    Water Contamination Reduces the Tolerance of Coral Larvae to Thermal Stress

    Get PDF
    Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST) posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination) and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2–3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors

    Effect of voriconazole on Candida tropicalis biofilms: Relation with ERG genes expression

    Get PDF
    Candida tropicalis has emerged as the third most prevalent fungal pathogens and its ability to form biofilms has been considered one of the most important virulence factors, since biofilms represent high tolerance to antifungal agents. However, the mechanisms of C. tropicalis biofilm resistance to antifungals remain poorly understood. Thus, the main aim of this work was to infer about the effect of voriconazole on the formation and control of C. tropicalis biofilms and disclose its relationship with ERG genes' expression. Planktonic cells tolerance of several C. tropicalis clinical isolates to voriconazole was determined through of antifungal susceptibility test, and the effect of this azole against C. tropicalis biofilm formation and pre-formed biofilms was evaluated by cultivable cells determination and total biomass quantification. ERG genes expression was analyzed by quantitative real-time polymerase chain reaction. This work showed that C. tropicalis resistance to voriconazole is strain dependent and that voriconazole was able to partially control biofilm formation, but was unable to eradicate C. tropicalis pre-formed biofilms. Moreover, C. tropicalis biofilms resistance to voriconazole seems to be associated with alterations of sterol content in the cell membrane, resulting in ERG genes overexpression. Voriconazole is unable to control C. tropicalis biofilms, and the overexpression of ERG genes is a possible mechanism of biofilm resistance.TheauthorsthanktheFCTfortheStrategic Project of the UID/BIO/04469/2013 unit, FCT and European Union funds (FEDER/COMPETE) for the project RECI/BBBEBI/0179/2012 (FCOMP-01-0124-FEDER-027462). We also would like to acknowledge PïŹzer , S.A. for the kindly donation of voriconazole

    Candida bracarensis: Evaluation of virulence factors and its tolerance to Amphotericin B and Fluconazole

    Get PDF
    Candida bracarensis is an uncommon Candida species found during an epidemiological study of candidiasis performed in Braga, Portugal. Initially, it was identified as C. glabrata, but recently detailed analyses pointed out their differences. So, little information is still available about C. bracarensis virulence factors and antifungal susceptibilities. Therefore, the main goal of this work is to evaluate the ability of C. bracarensis to form biofilms, to produce hydrolytic enzymes (proteases, phospholipases and hemolysins), as well as its susceptibility to amphotericin B and fluconazole. It was shown, for the first time, that all C. bracarensis strains were able to form biofilms and display proteinase and hemolytic activities. Moreover, although planktonic cells presented antifungal susceptibility, amphotericin B and fluconazole were unable to inhibit biofilm formation and eradicate pre-formed biofilms. Due to the propensity of C. bracarensis to display antifungal resistance and virulence attributes, the control of these emerging pathogens is recommended.This work was supported by the projects PTDC/SAU-MIC/119069/2010, PEst-OE/EQB/LA0023/2013, from Fundação para a CiĂȘncia e Tecnologia (FCT), Portugal and ‘‘BioHealth—Biotechnology and Bioengineering approaches to improve health quality’’, Ref. NORTE-07-0124FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the project ‘‘Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB’’, Ref. FCOMP-01-0124-FEDER027462

    Insights into Candida tropicalis nosocomial infections and virulence factors

    Get PDF
    Candida tropicalis is considered the first or the second non-Candida albicans Candida (NCAC) species most frequently isolated from candidosis, mainly in patients admitted in intensive care units (ICUs), especially with cancer, requiring prolonged catheterization, or receiving broad-spectrum antibiotics. The proportion of candiduria and candidemia caused by C. tropicalis varies widely with geographical area and patient group. Actually, in certain countries, C. tropicalis is more prevalent, even compared with C. albicans or other NCAC species. Although prophylactic treatments with fluconazole cause a decrease in the frequency of candidosis caused by C. tropicalis, it is increasingly showing a moderate level of fluconazole resistance. The propensity of C. tropicalis for dissemination and the high mortality associated with its infections might be strongly related to the potential of virulence factors exhibited by this species, such as adhesion to different host surfaces, biofilm formation, infection and dissemination, and enzymes secretion. Therefore, the aim of this review is to outline the present knowledge on all the above-mentioned C. tropicalis virulence traits.The authors acknowledge Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil, for supporting Melyssa Negri (BEX 4642/06-6) and Fundacao para a Ciencia e Tecnologia (FCT), Portugal, for supporting Sonia Silva (SFRH/BPD/71076/2010), and European Community fund FEDER, trough Program COMPETE under the Project FCOMP-01-0124-FEDER-007025 (PTDC/AMB/68393/2006) is gratefully acknowledged

    Body weight and risk of soft-tissue sarcoma

    Get PDF
    The relation between body mass (BMI) and soft-tissue sarcoma (STS) risk was evaluated in a case–control study from Northern Italy based on 217 incident STS and 1297 hospital controls. The risk of STS rose with BMI, with multivariate odds ratios of 3.49 (95% confidence interval (CI) 1.06–11.55) among men and 3.26 (95% CI 1.27–8.35) among women with a BMI >30 kg m–2 compared to those with BMI ≀ 20 kg m–2. © 1999 Cancer Research Campaig

    Strong mucosal immune responses in SIV infected macaques contribute to viral control and preserved CD4+ T-cell levels in blood and mucosal tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since there is still no protective HIV vaccine available, better insights into immune mechanism of persons effectively controlling HIV replication in the absence of any therapy should contribute to improve further vaccine designs. However, little is known about the mucosal immune response of this small unique group of patients. Using the SIV-macaque-model for AIDS, we had the rare opportunity to analyze 14 SIV-infected rhesus macaques durably controlling viral replication (controllers). We investigated the virological and immunological profile of blood and three different mucosal tissues and compared their data to those of uninfected and animals progressing to AIDS-like disease (progressors).</p> <p>Results</p> <p>Lymphocytes from blood, bronchoalveolar lavage (BAL), and duodenal and colonic biopsies were phenotypically characterized by polychromatic flow cytometry. In controllers, we observed higher levels of CD4+, CD4+CCR5+ and Gag-specific CD8+ T-cells as well as lower immune activation in blood and all mucosal sites compared to progressors. However, we could also demonstrate that immunological changes are distinct between these three mucosal sites.</p> <p>Intracellular cytokine staining demonstrated a significantly higher systemic and mucosal CD8+ Gag-specific cellular immune response in controllers than in progressors. Most remarkable was the polyfunctional cytokine profile of CD8+ lymphocytes in BAL of controllers, which significantly dominated over their blood response. The overall suppression of viral replication in the controllers was confirmed by almost no detectable viral RNA in blood and all mucosal tissues investigated.</p> <p>Conclusion</p> <p>A strong and complex virus-specific CD8+ T-cell response in blood and especially in mucosal tissue of SIV-infected macaques was associated with low immune activation and an efficient suppression of viral replication. This likely afforded a repopulation of CD4+ T-cells in different mucosal compartments to almost normal levels. We conclude, that a robust SIV-specific mucosal immune response seems to be essential for establishing and maintaining the controller status and consequently for long-term survival.</p

    Silicone colonization by non-Candida albicans Candida species in the presence of urine

    Get PDF
    Urinary tract infections (UTIs) are the most common nosocomial infections and 80 % are related to the use of urinary catheters. Furthermore, Candida species are responsible for around 15 % of UTIs and an increasing involvement of non-Candida albicans Candida (NCAC) species (e.g. Candida glabrata, Candida tropicalis and Candida parapsilosis) has been recognized. Given the fact that silicone is frequently used in the manufacture of urinary catheters, the aim of this work was to compare both the adhesion and biofilm formation on silicone of different urinary clinical isolates of NCAC species (i.e. C. glabrata, C. tropicalis and C. parapsilosis) in the presence of urine. Several clinical isolates of NCAC species recovered from patients with UTIs, together with reference strains of each species, were examined. Adhesion and biofilm formation were performed in artificial urine and the biofilm biomass was assessed by crystal violet staining. Hydrophobicity and surface charge of cells was determined by measuring contact angles and zeta potential, respectively. The number of viable cells in biofilms was determined by enumeration of c.f.u. after appropriate culture. The biofilm structure was also examined by confocal laser scanning microscopy (CLSM). The results showed that all isolates adhered to silicone in a species- and strain-dependent manner with C. parapsilosis showing the lowest and C. glabrata the highest levels of adhesion. However, these differences in adhesion abilities cannot be correlated with surface properties since all strains examined were hydrophilic and exhibited a similar zeta potential. Despite a higher number of cultivable cells being recovered after 72 h of incubation, stronger biofilm formation was not observed and CLSM showed an absence of extracellular polymeric material for all isolates examined. In summary, this work demonstrated that all tested NCAC species were able to adhere to and survive on silicone in the presence of urine. Furthermore, C. glabrata strains presented higher colonization abilities than C. tropicalis and C. parapsilosis strains, a fact that might explain the larger role of C. glabrata colonization and disseminated infections in hospitalized and catheterized patients.The authors acknowledge the Fundacao para a Ciencia e Tecnologia (FCT), Portugal, for supporting the work of S. S. through grant SFRH/BD/28341/2006 and project PDTC/1310/61112/2004. The authors are also grateful to Hospital de S Marcos, Braga, for providing clinical isolates
    • 

    corecore