94 research outputs found

    Drugs and life-threatening ventricular arrhythmia risk: results from the DARE study cohort.

    Get PDF
    OBJECTIVES: To establish a unique sample of proarrhythmia cases, determine the characteristics of cases and estimate the contribution of individual drugs to the incidence of proarrhythmia within these cases. SETTING: Suspected proarrhythmia cases were referred by cardiologists across England between 2003 and 2011. Information on demography, symptoms, prior medical and drug histories and data from hospital notes were collected. PARTICIPANTS: Two expert cardiologists reviewed data for 293 referred cases: 130 were included. Inclusion criteria were new onset or exacerbation of pre-existing ventricular arrhythmias, QTc >500 ms, QTc >450 ms (men) or >470 ms (women) with cardiac syncope, all secondary to drug administration. Exclusion criteria were acute ischaemia and ischaemic polymorphic ventricular tachycardia at presentation, structural heart disease, consent withdrawn or deceased prior to study. Descriptive analysis of Caucasian cases (95% of included cases, n=124) and culpable drug exposures was performed. RESULTS: Of the 124 Caucasian cases, 95 (77%) were QTc interval prolongation-related; mean age was 62 years (SD 15), and 63% were female. Cardiovascular comorbidities included hypertension (53%) and patient-reported 'heart rhythm problems' (73%). Family history of sudden death (36%) and hypokalaemia at presentation (27%) were common. 165 culpable drug exposures were reported, including antiarrhythmics (42%), of which amiodarone and flecainide were the most common. Sotalol, a beta-blocking agent with antiarrhythmic activity, was also common (15%). 26% reported multiple drugs, of which 84% reported at least one cytochrome (CYP) P450 inhibitor. Potential pharmacodynamics interactions identified were mainly QT prolongation (59%). CONCLUSIONS: Antiarrhythmics, non-cardiac drugs and drug combinations were found to be culpable in a large cohort of 124 clinically validated proarrhythmia cases. Potential clinical factors that may warn the prescriber of potential proarrhythmia include older women, underlying cardiovascular comorbidity, family history of sudden death and hypokalaemia

    Guest Editorial: Design and Analysis of Communication Interfaces for Industry 4.0

    Get PDF
    This special issue (SI) aims to present recent advances in the design and analysis of communication interfaces for Industry 4.0. The Industry 4.0 paradigm aims to integrate advanced manufacturing techniques with Industrial Internet-of-Things (IIoT) to create an agile digital manufacturing ecosystem. The main goal is to instrument production processes by embedding sensors, actuators and other control devices which autonomously communicate with each other throughout the value-chain [1]

    Intravenous iron therapy for heart failure and iron deficiency: An updated meta-analysis of randomized clinical trials

    Get PDF
    \ua9 2024 The Author(s). ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.Heart failure (HF) patients frequently exhibit iron deficiency, which is associated with a poor prognosis. Although various trials have been conducted, it is uncertain if intravenous (IV) iron replenishment improves clinical outcomes in HF patients with iron deficiency. A comprehensive literature search was conducted using PubMed/MEDLINE, Embase, and the Cochrane Library from inception till 15 September 2023 to retrieve randomized controlled trials (RCTs) that compared IV iron therapy with placebo or standard of care in patients with HF and iron deficiency. Clinical outcomes were assessed by generating forest plots using the random-effects model and pooling odds ratios (ORs) or weighted mean differences (WMDs). Fourteen RCTs with 6651 patients were included. IV iron therapy showed a significantly reduced incidence of the composite of first heart failure hospitalization (HHF) or cardiovascular (CV) mortality as compared with the control group (OR = 0.73, 95% CI: 0.58 to 0.92). The IV iron therapy resulted in a trend towards lower CV mortality (OR = 0.88, 95% CI: 0.76 to 1.01), 1-year all-cause mortality (OR = 0.85, 95% CI: 0.71 to 1.02), and first HHF (OR = 0.73, 95% CI: 0.51 to 1.05), and an improved left ventricular ejection fraction (LVEF) (MD = 4.54, 95% CI: −0.13 to 9.21). Meta-regression showed a significant inverse moderating effect of baseline LVEF on the first HHF or CV death. In patients with HF and iron deficiency, IV iron therapy reduced the incidence of composite of first HHF or CV mortality. There was a trend of lower overall CV and 1-year all-cause mortality, first HHF, and improved LVEF with IV iron therapy

    Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/-mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    C4b Binding Protein Binds to CD154 Preventing CD40 Mediated Cholangiocyte Apoptosis: A Novel Link between Complement and Epithelial Cell Survival

    Get PDF
    Activation of CD40 on hepatocytes and cholangiocytes is critical for amplifying Fas-mediated apoptosis in the human liver. C4b-Binding Protein (C4BP) has been reported to act as a potential surrogate ligand for CD40, suggesting that it could be involved in modulating liver epithelial cell survival. Using surface plasmon resonance (BiaCore) analysis supported by gel filtration we have shown that C4BP does not bind CD40, but it forms stable high molecular weight complexes with soluble CD40 ligand (sCD154). These C4BP/sCD154 complexes bound efficiently to immobilised CD40, but when applied to cholangiocytes they failed to induce apoptosis or proliferation or to activate NFkB, AP-1 or STAT 3, which are activated by sCD154 alone. Thus C4BP can modulate CD40/sCD154 interactions by presenting a high molecular weight multimeric sCD154/C4BP complex that suppresses critical intracellular signalling pathways, permitting cell survival without inducing proliferation. Immunohistochemistry demonstrated co-localisation and enhanced expression of C4BP and CD40 in human liver cancers. These findings suggest a novel pathway whereby components of the complement system and TNF ligands and receptors might be involved in modulating epithelial cell survival in chronic inflammation and malignant disease

    Cryptic Transcription Mediates Repression of Subtelomeric Metal Homeostasis Genes

    Get PDF
    Nonsense-mediated mRNA decay (NMD) prevents the accumulation of transcripts bearing premature termination codons. Here we show that Saccharomyces cerevisiae NMD mutants accumulate 5â€Č–extended RNAs (CD-CUTs) of many subtelomeric genes. Using the subtelomeric ZRT1 and FIT3 genes activated in response to zinc and iron deficiency, respectively, we show that transcription of these CD-CUTs mediates repression at the bona fide promoters, by preventing premature binding of RNA polymerase II in conditions of metal repletion. Expression of the main ZRT1 CD-CUT is controlled by the histone deacetylase Rpd3p, showing that histone deacetylases can regulate expression of genes through modulation of the level of CD-CUTs. Analysis of binding of the transcriptional activator Zap1p and insertion of transcriptional terminators upstream from the Zap1p binding sites show that CD-CUT transcription or accumulation also interferes with binding of the transcriptional activator Zap1p. Consistent with this model, overexpressing Zap1p or using a constitutively active version of the Aft1p transcriptional activator rescues the induction defect of ZRT1 and FIT3 in NMD mutants. These results show that cryptic upstream sense transcription resulting in unstable transcripts degraded by NMD controls repression of a large number of genes located in subtelomeric regions, and in particular of many metal homeostasis genes

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk

    Get PDF
    To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.Academy of Finland (129293, 128315, 129330, 131593, 139635, 139635, 121584, 126925, 124282, 129378, 258753); Action on Hearing Loss (G51); Ahokas Foundation; American Diabetes Association (#7-12-MN-02); Atlantic Canada Opportunities Agency; Augustinus foundation; Becket foundation; Benzon Foundation; Biomedical Research Council; British Heart Foundation (SP/04/002); Canada Foundation for Innovation; Commission of the European Communities, Directorate C-Public Health (2004310); Copenhagen County; Danish Centre for Evaluation and Health Technology Assessment; Danish Council for Independent Research; Danish Heart Foundation (07-10-R61-A1754-B838-22392F); Danish Medical Research Council; Danish Pharmaceutical Association; Emil Aaltonen Foundation; European Research Council Advanced Research Grant; European Union FP7 (EpiMigrant, 279143; FP7/2007-2013; 259749); Finland's Slottery Machine Association; Finnish Cultural Foundation; Finnish Diabetes Research Foundation; Finnish Foundation for Cardiovascular Research; Finnish Foundation of Cardiovascular Research; Finnish Medical Society; Finnish National Public Health Institute; Finska LĂ€karesĂ€llskapet; FolkhĂ€lsan Research Foundation; Foundation for Life and Health in Finland; German Center for Diabetes Research (DZD) ; German Federal Ministry of Education and Research; Health Care Centers in Vasa, NĂ€rpes and Korsholm; Health Insurance Foundation (2012B233) ; Helsinki University Central Hospital Research Foundation; Hospital districts of Pirkanmaa, Southern Ostrobothnia, North Ostrobothnia, Central Finland, and Northern Savo; Ib Henriksen foundation; Juho Vainio Foundation; Korea Centers for Disease Control and Prevention (4845–301); Korea National Institute of Health (2012-N73002-00); Li Ka Shing Foundation; Liv och HĂ€lsa; Lundbeck Foundation; Marie-Curie Fellowship (PIEF-GA-2012-329156); Medical Research Council (G0601261, G0900747-91070, G0601966, G0700931); Ministry of Education in Finland; Ministry of Social Affairs and Health in Finland; MRC-PHE Centre for Environment and Health;Municipal Heath Care Center and Hospital in Jakobstad; NĂ€rpes Health Care Foundation; National Institute for Health Research (RP-PG-0407-10371); National Institutes of Health (U01 DK085526, U01 DK085501, U01 DK085524, U01 DK085545, U01 DK085584, U01 DK088389, RC2-DK088389, DK085545, DK098032, HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN, R01MH107666 and K12CA139160268201300050C, U01 DK062370, R01 DK066358, U01DK085501, R01HL102830, R01DK073541, PO1AG027734, R01AG046949, 1R01AG042188, P30AG038072, R01 MH101820, R01MH090937, P30DK020595, R01 DK078616, NIDDK K24 DK080140, 1RC2DK088389, T32GM007753); National Medical Research Council; National Research Foundation of Korea (NRF-2012R1A2A1A03006155); Nordic Center of Excellence in Disease Genetics; Novo Nordisk; Ollqvist Foundation; OrionFarmos Research Foundation; Paavo Nurmi Foundation; PerklĂ©n Foundation; Samfundet FolkhĂ€lsan; Signe and Ane Gyllenberg Foundation; Sigrid Juselius Foundation; Social Insurance Institution of Finland; South East Norway Health Authority (2011060); Swedish Cultural Foundation in Finland; Swedish Heart-Lung Foundation; Swedish Research Council; Swedish Research Council (LinnĂ© and Strategic Research Grant); The American Federation for Aging Research; The Einstein Glenn Center; The European Commission (HEALTH-F4-2007-201413); The Finnish Diabetes Association; The FolkhĂ€lsan Research Foundation; The PĂ„hlssons Foundation; The provinces of Newfoundland and Labrador, Nova Scotia, and New Brunswick; The Sigrid Juselius Foundation; The SkĂ„ne Regional Health Authority; The Swedish Heart-Lung Foundation; Timber Merchant Vilhelm Bang’s Foundation; Turku University Foundation; Uppsala University; Wellcome Trust (064890, 083948, 085475, 086596, 090367, 090532, 092447, 095101/Z/10/Z, 200837/Z/16/Z, 095552, 098017, 098381, 098051, 084723, 072960/2/ 03/2, 086113/Z/08/Z, WT098017, WT064890, WT090532, WT098017, 098051, WT086596/Z/08/A and 086596/Z/08/Z). Detailed acknowledgment of funding sources is provided in the Additional Acknowledgements section of the Supplementary Materials

    Development of copper based drugs, radiopharmaceuticals and medical materials

    Full text link
    • 

    corecore