890 research outputs found

    Can patterns of urban biodiversity be predicted using simple measures of green infrastructure?

    Get PDF
    Urban species and habitats provide important ecosystem services such as summertime cooling, recreation, and pollination at a variety of scales. Many studies have assessed how biodiversity responds to urbanization, but little work has been done to try and create recommendations that can be easily applied to urban planning, design and management practice. Urban planning often operates at broad spatial scales, typically using relatively simplistic targets for land cover mix to influence biodiversity and ecosystem service provision. Would more complicated, but still easily created, prescriptions for urban vegetation be beneficial? Here we assess the importance of vegetation measures (percentage vegetation cover, tree canopy cover and variation in canopy height) across four taxonomic groups (bats, bees, hoverflies and birds) at multiple spatial scales (100, 250, 500, 1000 m) within a major urban area (Birmingham, the United Kingdom). We found that small-scale (100–250-m radius) measures of vegetation were important predictors for hoverflies and bees, and that bats were sensitive to vegetation at a medium spatial-scale (250–500 m). In contrast, birds responded to vegetation characteristics at both small (100 m) and large (1000 m) scales. Vegetation cover, tree cover and variation in canopy height were expected to decrease with built surface cover; however, only vegetation height showed this expected trend. The results indicate the importance of relatively small patches of vegetation cover for supporting urban biodiversity, and show that relatively simple measures of vegetation characteristics can be useful predictors of species richness (or activity density, in the case of bats). They also highlight the danger of relying upon percentage built surface cover as an indicator of urban biodiversity potential

    Quantum Memories. A Review based on the European Integrated Project "Qubit Applications (QAP)"

    Full text link
    We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU Integrated Project "Qubit Applications". We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in "Qubit Applications" in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria.Comment: 22 pages, 12 figure

    Integrated Visualization of Human Brain Connectome Data

    Get PDF
    Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases

    Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevityaging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England

    Get PDF
    Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein

    A seesaw model for intermolecular gating in the kinesin motor protein

    Get PDF
    Recent structural observations of kinesin-1, the founding member of the kinesin group of motor proteins, have led to substantial gains in our understanding of this molecular machine. Kinesin-1, similar to many kinesin family members, assembles to form homodimers that use alternating ATPase cycles of the catalytic motor domains, or “heads”, to proceed unidirectionally along its partner filament (the microtubule) via a hand-over-hand mechanism. Cryo-electron microscopy has now revealed 8-Å resolution, 3D reconstructions of kinesin-1•microtubule complexes for all three of this motor’s principal nucleotide-state intermediates (ADP-bound, no-nucleotide, and ATP analog), the first time filament co-complexes of any cytoskeletal motor have been visualized at this level of detail. These reconstructions comprehensively describe nucleotide-dependent changes in a monomeric head domain at the secondary structure level, and this information has been combined with atomic-resolution crystallography data to synthesize an atomic-level "seesaw" mechanism describing how microtubules activate kinesin’s ATP-sensing machinery. The new structural information revises or replaces key details of earlier models of kinesin’s ATPase cycle that were based principally on crystal structures of free kinesin, and demonstrates that high-resolution characterization of the kinesin–microtubule complex is essential for understanding the structural basis of the cycle. I discuss the broader implications of the seesaw mechanism within the cycle of a fully functional kinesin dimer and show how the seesaw can account for two types of "gating" that keep the ATPase cycles of the two heads out of sync during processive movement

    Misaligned Protoplanetary Disks in a Young Binary System

    Get PDF
    Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our solar system; orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests significant orbital migration. There is currently no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star on an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but these measurements are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tau are misaligned by 60{\deg}-68{\deg}, so one or both disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently due to the binary formation process.Comment: Published in Nature, July 31 2014. 18 pages. This version has slight differences from the final published version. Final version is available at http://www.nature.com/nature/journal/v511/n7511/full/nature13521.htm

    Compared to placebo, long-term antibiotics resolve otitis media with effusion (OME) and prevent acute otitis media with perforation (AOMwiP) in a high-risk population: A randomized controlled trial

    Get PDF
    © 2008 Leach et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background : For children at high risk of chronic suppurative otitis media (CSOM), strategies to prevent acute otitis media with perforation (AOMwiP) may reduce progression to CSOM. Methods : In a double blind study in northern Australia, 103 Aboriginal infants with first detection of OME were randomised to receive either amoxicillin (50 mg/kg/d BD) or placebo for 24 weeks, or until bilateral aerated middle ears were diagnosed at two successive monthly examinations (success). Standardised clinical assessments and international standards for microbiology were used. Results : Five of 52 infants in the amoxicillin group and none of 51 infants in the placebo group achieved success at the end of therapy (Risk Difference = 9.6% [95% confidence interval 1.6,17.6]). Amoxicillin significantly reduced the proportion of children with i) perforation at the end of therapy (27% to 12% RD = -16% [-31,-1]), ii) recurrent perforation during therapy (18% to 4% RD = -14% [-25,-2]), and iii) reduced the proportion of examinations with a diagnosis of perforation during therapy (20% to 8% adjusted risk ratio 0.36 [0.15,0.83] p = 0.017). During therapy, the proportion of examinations with penicillin non-susceptible (MIC > 0.1 microg/ml) pneumococci was not significantly different between the amoxicillin group (34%) and the placebo group (40%). Beta-lactamase positive non-capsular H. influenzae (NCHi) were uncommon during therapy but more frequent in the amoxicillin group (10%) than placebo (5%). Conclusion : Aboriginal infants receiving continuous amoxicillin had more normal ears, fewer perforations, and less pneumococcal carriage. There was no statistically significant increase in resistant pneumococci or NCHi in amoxicillin children compared to placebo children who received regular paediatric care and antibiotic treatment for symptomatic illnesses

    A Meta-Analysis of Global Urban Land Expansion

    Get PDF
    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely
    corecore