186 research outputs found

    Associations between multimorbidity and neuropathology in dementia: Consideration of functional cognitive disorders, psychiatric illness and dementia mimics

    Get PDF
    \ua9 The Author(s), 2024. Published by Cambridge University Press on behalf of Royal College of Psychiatrists.Background Multimorbidity, the presence of two or more health conditions, has been identified as a possible risk factor for clinical dementia. It is unclear whether this is due to worsening brain health and underlying neuropathology, or other factors. In some cases, conditions may reflect the same disease process as dementia (e.g. Parkinson\u27s disease, vascular disease), in others, conditions may reflect a prodromal stage of dementia (e.g. depression, anxiety and psychosis). Aims To assess whether multimorbidity in later life was associated with more severe dementia-related neuropathology at autopsy. Method We examined ante-mortem and autopsy data from 767 brain tissue donors from the UK, identifying physical multimorbidity in later life and specific brain-related conditions. We assessed associations between these purported risk factors and dementia-related neuropathological changes at autopsy (Alzheimer\u27s-disease related neuropathology, Lewy body pathology, cerebrovascular disease and limbic-predominant age-related TDP-43 encephalopathy) with logistic models. Results Physical multimorbidity was not associated with greater dementia-related neuropathological changes. In the presence of physical multimorbidity, clinical dementia was less likely to be associated with Alzheimer\u27s disease pathology. Conversely, conditions which may be clinical or prodromal manifestations of dementia-related neuropathology (Parkinson\u27s disease, cerebrovascular disease, depression and other psychiatric conditions) were associated with dementia and neuropathological changes. Conclusions Physical multimorbidity alone is not associated with greater dementia-related neuropathological change; inappropriate inclusion of brain-related conditions in multimorbidity measures and misdiagnosis of neurodegenerative dementia may better explain increased rates of clinical dementia in multimorbidit

    The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes

    Get PDF
    Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk and can also have substantial implications for athlete health and injury risk in the elite sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal characteristics and physical activity. The interrelationships between such factors, and a strong genetic component, suggested to be around 50–85% at various anatomical sites, determine skeletal health throughout life. Genome-wide association studies and case–control designs have revealed many loci associated with variation in BMD. However, a number of the candidate genes identified at these loci have no known associated biological function or have yet to be replicated in subsequent investigations. Furthermore, few investigations have considered gene–environment interactions—in particular, whether specific genes may be sensitive to mechanical loading from physical activity and the outcome of such an interaction for BMD and potential injury risk. Therefore, this review considers the importance of physical activity on BMD, genetic associations with BMD and how subsequent investigation requires consideration of the interaction between these determinants. Future research using well-defined independent cohorts such as elite athletes, who experience much greater mechanical stress than most, to study such phenotypes, can provide a greater understanding of these factors as well as the biological underpinnings of such a physiologically “extreme” population. Subsequently, modification of training, exercise or rehabilitation programmes based on genetic characteristics could have substantial implications in both the sporting and public health domains once the fundamental research has been conducted successfully

    No association between tendon-related genes and performance in elite European Caucasian marathon runners.

    Get PDF
    Tendons adapt to load under normal physiological conditions, however, under extreme loading conditions, such as those experienced by elite endurance athletes, incomplete adaptation may occur and cause injury. The prevalence of tendinopathies in elite endurance athletes is approximately 50%, thus variability exists in an athlete's tolerance to extreme loading. A number of intrinsic and extrinsic factors contribute to modulating injury risk, some of which are modifiable and others, such as genetic variants, are non-modifiable. It was hypothesized that elite marathon runners would possess a genotype associated with enhanced tendon function, and thus protective against tendinopathy. Here, we compared the genotype frequencies of six genetic variants (COL1A1 rs1800012, VEGFA rs699947, TIMP2 rs4789932, MMP3 rs591058, MMP3 rs650108, MMP3 rs679620), previously associated with tendinopathy, in elite (men <2 h 30 min, n = 109, women <3 h 00 min, n = 99) and sub-elite (men 2 h 30 min-2 h 45 min, n = 189; women 3 h 00 min-3 h 15 min, n = 71) marathon runners with those of a non-athletic control group (n = 564). Genotype associations with marathon personal best time in the athlete group were also investigated. All participants provided either a whole blood, saliva or buccal cell sample, from which DNA was isolated, and genotyped for all six variants using real-time PCR. Genotype frequency differed between athletes and controls for TIMP2 rs4789932 (TT = 17%, CT = 51%, CC = 32% vs. TT = 22%, CT = 42%, CC = 36%, respectively; χ2 = 8.135, P = 0.017) only. However, there was no clear difference in allele frequencies between groups for TIMP2 rs4789932. MMP3 rs650108 genotype frequency differed between female elite and sub-elite athletes (χ2 = 11.913, P = 0.003) only and, as hypothesized, it was the “risk” A-allele that was ~10% less frequent in the elite, than sub-elite athletes. Following combination of all genotype data into a total genotype score, no differences in score between athletes and controls were observed (t = 2.93, P = 0.769). Similarly, no associations between total genotype score and marathon personal best time in male and female runners were observed (r ≤ 0.066, P ≥ 0.394). The results suggest elite marathon runners do not possess a genotype protective against tendinopathy, at least for the tendon-related genetic variants we investigated

    Associations of bone mineral density-related genes and marathon performance in elite European Caucasian marathon runners.

    Get PDF
    Bone mineral density (BMD) is a multi-factorial phenotype determined by factors such as physical activity, diet and a sizeable genetic component. Athletic populations tend to possess higher BMD than non-athletes due to a larger volume of exercise completed. Despite this, some endurance runners can possess low BMD and/or suffer stress fractures, which can have negative impacts on their health and performance. Therefore, we hypothesised that elite endurance runners would possess a genotype associated with enhanced BMD and a reduced risk of injury, resulting in less training interruption and greater potential success. The study compared the genotype and allele frequencies of 5 genetic variants associated with BMD (LRP5 rs3736228, TNFRSF11B rs4355801, VDR rs2228570, WNT16 rs3801387, AXIN1 rs9921222) in elite (men < 2 h 30 min, n = 110; women < 3 h 00 min, n = 98) and sub-elite (men 2 h 30 min – 2 h 45 min, n = 181; women 3 h 00 min – 3 h 15 min, n = 67) marathon runners with those of a non-athlete control population (n = 474). We also investigated whether marathon personal best time was associated with a more “advantageous” BMD genotype. Congruent with our hypothesis, the “risk” T allele for the AXIN1 rs9921222 polymorphism was 5% more frequent in the control group than in sub-elites (P = 0.030, χ2 = 4.69) but no further differences were observed for this variant (P ≥ 0.083, χ2 ≤ 4.98). WNT16 rs3801387 genotype frequency differed between athletes and controls (P = 0.002, χ2 = 12.02) and elites vs controls (P = 0.008, χ2 = 9.72), as did allele frequency. However, contrary to our hypothesis, it was the “risk” A allele that was ~5% more frequent in athletes than controls. Similarly, when combining data from all 5 variants, the athletes had a lower Total Genotype Score than controls (53.6 vs 65.7; P ≤ 0.001), again suggesting greater genetic susceptibility to bone injury in athletes. Personal best times were not associated with genotype in any comparison. These results suggest that high-level endurance runners do not benefit from genetic resistance to bone injury and a resulting ability to sustain large training volumes, contradicting our hypothesis. High-level endurance runners appear to be at a higher risk of bone injury from a genetic perspective, for as yet unexplained reasons, although large inter-individual differences in genetic risk exist

    Bone mineral density in high-level endurance runners: part B—genotype-dependent characteristics

    Get PDF
    Purpose: Inter-individual variability in bone mineral density (BMD) exists within and between endurance runners and non-athletes, probably in part due to differing genetic profiles. Certainty is lacking, however, regarding which genetic variants may contribute to BMD in endurance runners and if specific genotypes are sensitive to environmental factors, such as mechanical loading via training. Method: Ten single-nucleotide polymorphisms (SNPs) were identified from previous genome-wide and/or candidate gene association studies that have a functional effect on bone physiology. The aims of this study were to investigate (1) associations between genotype at those 10 SNPs and bone phenotypes in high-level endurance runners, and (2) interactions between genotype and athlete status on bone phenotypes. Results: Female runners with P2RX7 rs3751143 AA genotype had 4% higher total-body BMD and 5% higher leg BMD than AC + CC genotypes. Male runners with WNT16 rs3801387 AA genotype had 14% lower lumbar spine BMD than AA genotype non-athletes, whilst AG + GG genotype runners also had 5% higher leg BMD than AG + GG genotype non-athletes. Conclusion: We report novel associations between P2RX7 rs3751143 genotype and BMD in female runners, whilst differences in BMD between male runners and non-athletes with the same WNT16 rs3801387 genotype existed, highlighting a potential genetic interaction with factors common in endurance runners, such as high levels of mechanical loading. These findings contribute to our knowledge of the genetic associations with BMD and improve our understanding of why some runners have lower BMD than others

    Genetic Polymorphisms Related to VO2max Adaptation Are Associated With Elite Rugby Union Status and Competitive Marathon Performance

    Get PDF
    PURPOSE: Genetic polymorphisms have been associated with the adaptation to training in maximal oxygen uptake (V˙O2max). However, the genotype distribution of selected polymorphisms in athletic cohorts is unknown, with their influence on performance characteristics also undetermined. This study investigated whether the genotype distributions of 3 polymorphisms previously associated with V˙O2max training adaptation are associated with elite athlete status and performance characteristics in runners and rugby athletes, competitors for whom aerobic metabolism is important. METHODS: Genomic DNA was collected from 732 men including 165 long-distance runners, 212 elite rugby union athletes, and 355 nonathletes. Genotype and allele frequencies of PRDM1 rs10499043 C/T, GRIN3A rs1535628 G/A, and KCNH8 rs4973706 T/C were compared between athletes and nonathletes. Personal-best marathon times in runners, as well as in-game performance variables and playing position, of rugby athletes were analyzed according to genotype. RESULTS: Runners with PRDM1 T alleles recorded marathon times ∼3 minutes faster than CC homozygotes (02:27:55 [00:07:32] h vs 02:31:03 [00:08:24] h, P = .023). Rugby athletes had 1.57 times greater odds of possessing the KCNH8 TT genotype than nonathletes (65.5% vs 54.7%, χ2 = 6.494, P = .013). No other associations were identified. CONCLUSIONS: This study is the first to demonstrate that polymorphisms previously associated with V˙O2max training adaptations in nonathletes are also associated with marathon performance (PRDM1) and elite rugby union status (KCNH8). The genotypes and alleles previously associated with superior endurance-training adaptation appear to be advantageous in long-distance running and achieving elite status in rugby union

    No association between ACTN3 R577X and ACE I/D polymorphisms and endurance running times in 698 Caucasian athletes

    Get PDF
    Background: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. Aim: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. Methods: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. Results: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. Conclusions: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running

    Crystal Structure of PrgI-SipD: Insight into a Secretion Competent State of the Type Three Secretion System Needle Tip and its Interaction with Host Ligands

    Get PDF
    Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface
    corecore