807 research outputs found
Recommended from our members
Phase separation process preventing thermal embrittlement of a Zr-Cu-Fe-Al bulk metallic glass
The structural changes and mechanical properties of a Zr 63 Cu 22 Fe 5 Al 10 bulk metallic glass (BMG), and a Zr 63 Cu 27 Al 10 one made for comparison, were studied on annealing below the crystallization temperature. The phase composition of the samples was studied by conventional X-ray diffractometry and high-resolution transmission electron microscopy including the atomic-scale elemental mapping. The samples were mechanically tested in compression. The Zr 63 Cu 22 Fe 5 Al 10 bulk metallic glass shows a high strength and good deformability at room temperature both in the as-cast state and after prolonged structural relaxation below the crystallization temperature. The reasons for such behavior are discussed in the present work
'Special K' and a loss of cell-to-cell adhesion in proximal tubule-derived epithelial cells: modulation of the adherens junction complex by ketamine
Ketamine, a mild hallucinogenic class C drug, is the fastest growing ‘party drug’ used by 16–24 year olds in the UK. As the recreational use of Ketamine increases we are beginning to see the signs of major renal and bladder complications. To date however, we know nothing of a role for Ketamine in modulating both structure and function of the human renal proximal tubule. In the current study we have used an established model cell line for human epithelial cells of the proximal tubule (HK2) to demonstrate that Ketamine evokes early changes in expression of proteins central to the adherens junction complex. Furthermore we use AFM single-cell force spectroscopy to assess if these changes functionally uncouple cells of the proximal tubule ahead of any overt loss in epithelial cell function. Our data suggests that Ketamine (24–48 hrs) produces gross changes in cell morphology and cytoskeletal architecture towards a fibrotic phenotype. These physical changes matched the concentration-dependent (0.1–1 mg/mL) cytotoxic effect of Ketamine and reflect a loss in expression of the key adherens junction proteins epithelial (E)- and neural (N)-cadherin and β-catenin. Down-regulation of protein expression does not involve the pro-fibrotic cytokine TGFβ, nor is it regulated by the usual increase in expression of Slug or Snail, the transcriptional regulators for E-cadherin. However, the loss in E-cadherin can be partially rescued pharmacologically by blocking p38 MAPK using SB203580. These data provide compelling evidence that Ketamine alters epithelial cell-to-cell adhesion and cell-coupling in the proximal kidney via a non-classical pro-fibrotic mechanism and the data provides the first indication that this illicit substance can have major implications on renal function. Understanding Ketamine-induced renal pathology may identify targets for future therapeutic intervention
A Membrane Fusion Protein αSNAP Is a Novel Regulator of Epithelial Apical Junctions
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins
Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces
In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure
Astronomical Spectroscopy
Spectroscopy is one of the most important tools that an astronomer has for
studying the universe. This chapter begins by discussing the basics, including
the different types of optical spectrographs, with extension to the ultraviolet
and the near-infrared. Emphasis is given to the fundamentals of how
spectrographs are used, and the trade-offs involved in designing an
observational experiment. It then covers observing and reduction techniques,
noting that some of the standard practices of flat-fielding often actually
degrade the quality of the data rather than improve it. Although the focus is
on point sources, spatially resolved spectroscopy of extended sources is also
briefly discussed. Discussion of differential extinction, the impact of
crowding, multi-object techniques, optimal extractions, flat-fielding
considerations, and determining radial velocities and velocity dispersions
provide the spectroscopist with the fundamentals needed to obtain the best
data. Finally the chapter combines the previous material by providing some
examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and
Stellar Systems, to be published in 2011 by Springer. Slightly revise
Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring
We construct a zero-curvature Lax connection in a sub-sector of the
superstring theory on AdS(4) x CP(3) which is not described by the
OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet
fermions associated to eight broken supersymmetries of the type IIA background
are physical fields. As such, the prescription for the construction of the Lax
connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4)
does not do the job. So, to construct the Lax connection we have used an
alternative method which nevertheless relies on the isometry of the target
superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde
A Unique Role for Nonmuscle Myosin Heavy Chain IIA in Regulation of Epithelial Apical Junctions
The integrity and function of the epithelial barrier is dependent on the apical junctional complex (AJC) composed of tight and adherens junctions and regulated by the underlying actin filaments. A major F-actin motor, myosin II, was previously implicated in regulation of the AJC, however direct evidence of the involvement of myosin II in AJC dynamics are lacking and the molecular identity of the myosin II motor that regulates formation and disassembly of apical junctions in mammalian epithelia is unknown. We investigated the role of nonmuscle myosin II (NMMII) heavy chain isoforms, A, B, and C in regulation of epithelial AJC dynamics and function. Expression of the three NMMII isoforms was observed in model intestinal epithelial cell lines, where all isoforms accumulated within the perijunctional F-actin belt. siRNA-mediated downregulation of NMMIIA, but not NMMIIB or NMMIIC expression in SK-CO15 colonic epithelial cells resulted in profound changes of cell morphology and cell-cell adhesions. These changes included acquisition of a fibroblast-like cell shape, defective paracellular barrier, and substantial attenuation of the assembly and disassembly of both adherens and tight junctions. Impaired assembly of the AJC observed after NMMIIA knock-down involved dramatic disorganization of perijunctional actin filaments. These findings provide the first direct non-pharmacological evidence of myosin II-dependent regulation of AJC dynamics in mammalian epithelia and highlight a unique role of NMMIIA in junctional biogenesis
Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility
<p>Abstract</p> <p>Background</p> <p>Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled <it>in vitro </it>by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium.</p> <p>Results</p> <p>Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase.</p> <p>Conclusion</p> <p>Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis.</p
Fixed duration pursuit-evasion differential game with integral constraints
We investigate a pursuit-evasion differential game of countably many pursuers and one evader. Integral constraints are imposed on control functions of the players. Duration of the game is fixed and the payoff of the game is infimum of the distances between the evader and pursuers when the game is completed. Purpose of the pursuers is to minimize the payoff and that of the evader is to maximize it. Optimal strategies of the players are constructed, and the value of the game is found. It should be noted that energy resource of any pursuer may be less than that of the evader
- …