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1 Introduction

The AdS4×CP 3 background of type IIA superstring theory is not maximally supersymmetric.
It preserves 24 supersymmetries (out of the maximum number of 32) which together with the
bosonic isometries of AdS4 × CP 3 form the supergroup OSp(6|4). It turns out that the
type IIA superspace associated with the AdS4 × CP 3 background which has 32 Grassmann–
odd directions is not a coset superspace of OSp(6|4) [1]. So the complete Green–Schwarz
superstring theory on this superspace is not a coset–superspace sigma–model, in contrast
e.g. to the maximally supersymmetric type IIB superstring on AdS5 × S5 described by the
PSU(2, 2|4)/(SO(1, 4)× SO(5)) sigma–model [2]. The worldsheet AdS4 × CP 3 superstring
action can be reduced to an OSp(6|4)/U(3)×SO(1, 3) sigma–model constructed in [3, 4, 5, 6, 7]
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in those sub–sectors of the classical configuration space of the theory in which the kappa–
symmetry can be used to eliminate eight fermionic modes of the string associated with the
broken supersymmetries. However, this is not always possible. For instance such a gauge choice
is inadmissible when the classical string moves entirely in AdS4 [3, 1] or forms a worldsheet
instanton wrapping a 2–cycle inside CP 3 [8]. In these cases the ‘broken supersymmetry’
fermions are physical modes, so one should start the analysis of the theory in these sectors
from the complete AdS4 × CP 3 superstring action [1] and, if required, make an alternative
choice of the kappa–symmetry gauge (see e.g. [9, 10, 11, 12]).

The classical integrability of the OSp(6|4)/U(3) × SO(1, 3) σ–model sub–sector of the
theory was demonstrated in [3, 4] by constructing a zero–curvature Lax connection using the
same techniques as for the AdS5 × S5 superstring [13]. Such a construction is based on the
Z4–automorphism of the isometry superalgebra and can be applied to anyG/H supercoset two–
dimensional sigma–model that admits a Z4–grading. Basically, the prescription is as follows.
Take a left–invariant Cartan form K−1dK (with K ∈ G/H being a supercoset element) which
are used to build the supercoset sigma–model action [2, 13, 3, 4]. The Cartan form takes values
in the isometry superalgebra G of G and thus can be expanded in the bosonic generators M0

and P2, and the fermionic generators Q1 and Q3 of G

K−1dK = Ω0 M0 + E2 P2 + E1 Q1 + E3Q3 . (1.1)

The building blocks of the G/H supercoset sigma–model action are the G/H supervielbeins
E2, E1 and E3, while Ω0 is the H–valued spin connection on G/H .

The bosonic generators M0 of the stability subgroup H have zero grading under the Z4–
automorphism and the bosonic coset–space translation generators P2 carry grading two. The
fermionic generators Q1 and Q3 have the Z4–grading one and three, respectively. In terms of
these generators the superalgebra G has the following schematic Z4–grading structure

[M0,M0] ∼ M0, [M0, P2] ∼ P2, [P2, P2] ∼ M0,

[M0, Q1] ∼ Q1, [M0, Q3] ∼ Q3, [P2, Q1] ∼ Q3, [P2, Q3] ∼ Q1, (1.2)

{Q1, Q1} ∼ P2, {Q3, Q3} ∼ P2, {Q1, Q3} ∼ M0.

In the case of the AdS4 × CP 3 superstring M0 ∈ so(1, 3)× u(3), P2 ∈ so(2,3)×su(4)
so(1,3)×u(3)

and Q1 and

Q3 are the 24 fermionic generators of OSp(6|4), see Appendix A.4.
The worldsheet Lax connection one–form which takes values in G is constructed by taking

the sum of the components of the Cartan form (1.1) and their worldsheet Hodge–duals with
some arbitrary coefficients, namely

L = Ω0M0 + (l1E2 + l2 ∗ E2)P2 + l3E1Q1 + l4E3Q3. (1.3)

Then one imposes the requirement that the curvature associated with the connection L vanishes

dL− L ∧ L = 0 (1.4)

(the exterior derivative acts from the right, and in what follows we shall not explicitly write
the wedge–product). The sigma–model equations of motion and the Z4–grading structure
of the superalgebra (1.2) ensure that the coefficients in the definition of the zero–curvature
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Lax connection (1.3) are expressed in terms of a single independent spectral parameter, e.g.
l1 =

1+z2

1−z2
.

By performing a gauge transformation of (1.3) one can get another form of the Lax con-
nection [13] associated with right–invariant Cartan forms dKK−1

L = KLK−1 − dKK−1 , dL− LL = 0 . (1.5)

Having at hand the Lax connection, one can then derive an infinite set of conserved charges of
the integrable model from the holonomy of the Lax connection by constructing a corresponding
monodromy matrix and the algebraic curve (see e.g. [13, 14] for more details and references
therein).

In the case of the complete Green–Schwarz theory (i.e. when the kappa–symmetry is not
fixed at all) the superstring moves in AdS4×CP 3 superspace with thirty two Grassmann–odd
directions and the eight worldsheet fermionic fields associated to the broken supersymmetry
contribute to the structure of the supervielbeins E2, E1 and E3 and to the connection Ω0

thus spoiling their nature as the G/H Cartan forms. As a result, as one can check by direct
calculations, the OSp(6|4) Lax connection of the form (1.3) or (1.5) constructed from Ω0, E2,
E1 and E3 which include the dependence on these eight fermions will not have zero curvature
for any non–trivial choice of the coefficients. Therefore, a modification of the form of (1.3) or
(1.5) by additional terms depending on the extra eight fermions is required for restoring the
zero curvature condition (1.4). The goal of this paper is to reveal the structure of these terms.

To construct the Lax connection which includes broken supersymmetry fermions we have
found helpful to look at the form of conserved Noether currents associated with the OSp(6|4)
isometry. In this respect it is more convenient to consider the Lax connection in the form (1.5)
which, in a certain sense, has closer relation to a G/H sigma–model conserved current having
the form [13, 3]

Jcoset = K

(

E2 P2 +
1

2
∗ (E1Q1 − E3Q3)

)

K−1 . (1.6)

The paper is organized as follows. In Section 2 we consider the AdS4 × CP 3 superstring
action truncated to the second order in fermions and show that there exist different forms of
the Lax connection, related to each other by local OSp(6|4) transformations, which have zero
curvature at least to the second order. When the eight broken supersymmetry fermions are
put to zero the Lax connection reduces (modulo a gauge transformation) to the supercoset Lax
connection of [3, 4]. The reconstruction of higher order fermionic terms in the Lax connection
becomes technically more and more complicated with each order and we have not been able
to accomplish the construction in the complete theory with 32 fermions. So in Section 3
we consider a simpler sub–sector of the theory in which the superstring moves only in an
AdS4 superspace with eight fermionic directions associated with broken supersymmetries. This
sub–sector of the theory is not reachable by the OSp(6|4) supercoset sigma–model and can
be regarded as a model of an N = 2, D = 4 superstring in the AdS4 background with
completely broken supersymmetries [1]. Nevertheless, this model is invariant under the four–
parameter kappa–symmetry, in addition to the purely bosonic isometry SO(2, 3) of AdS4 and
SO(2) transformations of the two Majorana fermions. So, surprisingly, the integrability of its
fermionic sector is not related to target space supersymmetry. To simplify the construction
of the full Lax connection in this model, in Section 4 we gauge fix kappa–symmetry and
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perform worldsheet T–duality transformations along the AdS4 Minkowski boundary following
the results of [9]. In Subsection 4.2 we give the explicit form of the kappa–symmetry gauge–
fixed Lax connection of the AdS4 superstring to all orders in fermions thus giving more evidence
for the classical integrability of the complete AdS4×CP 3 superstring itself. Section 5 is devoted
to a summary of the obtained results and discussion of the possibility of their generalization
and application to strings in other supergravity backgrounds. Our notation and conventions
are given in Appendices A and B, and in Appendices C and D we have collected various
formulas and relations which have been used to construct the Lax connections.

2 AdS4×CP 3 superstring in the quadratic approximation

in fermions

2.1 The action and equations of motion

We first check that a zero–curvature Lax connection does exist in the complete AdS4 × CP 3

superstring theory at least up to the second order in the fermionic fields. To this end we start
with the AdS4 × CP 3 superstring action truncated to the second order in fermions as in [15].
In the notation and conventions of [8] the action has the following form

S = − e
2

3
φ0

4πα′

∫

d2ξ
√
−h hIJ eI

AeJ
BηAB

− e
2

3
φ0

2πα′

∫

d2ξΘ(
√
−h hIJ − εIJΓ11)

[

i eI
AΓA∇JΘ− 1

R
eI

AeJ
BΓAP24γ

5ΓBΘ
]

(2.1)

where hIJ(ξ) (I, J = 0, 1) is the intrinsic (auxiliary) worldsheet metric, eI
A = ∂IX

MeM
A(X)

are the worldsheet pullbacks of the AdS4 × CP 3 vielbeins (M = 0, 1, · · · , 9 are the D = 10
space-time indices and A = 0, 1, · · · , 9 are the tangent space indices). XM = (xm̂, ym

′

) are
AdS4 ×CP 3 coordinates (m̂ = 0, 1, 2, 3; m′ = 1′, · · · 6′), ∇Θ = (d− 1

4
ωAB ΓAB)Θ is the world-

sheet pullback of the conventional AdS4 × CP 3 covariant derivative and P24 is the projector
which splits the 32 fermionic coordinates Θα (α = 1, · · · , 32) into 24 fermionic coordinates
ϑ corresponding to the 24 unbroken supersymmetries of the AdS4 × CP 3 background and 8
‘broken supersymmetry’ coordinates υ

P24 =
1

8
(6 + iJa′b′ Γ

a′b′ γ7) , ϑ ≡ P24 Θ , υ ≡ (1− P24) Θ. (2.2)

In (2.2) Ja′b′ = −Jb′a′ is the Kähler form on CP 3, Γa′ are D = 10 Dirac matrices along the
six CP 3 directions (a′ = 1′, · · · , 6′) and γ7 = iΓ1′ · · ·Γ6′ is the product of all of them. The
presence in the action (2.1) of the projector P24 is due to the interaction of the string with
the constant Ramond–Ramond F4 ∼ dx0dx1dx2dx3 and F2 ∼ dya

′

dyb
′

Ja′b′ fluxes of type IIA
supergravity on AdS4 × CP 3. γ5 = iΓ0123 is the product of the four gamma–matrices with
AdS4 indices. Finally, φ0 is the vacuum expectation value of the dilaton and R is related to

the CP 3 radius in the string frame RCP 3 = e
φ0
3 R. See Appendix A for more details of our

notation and conventions.
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The bosonic field equations which follow from (2.1) are

∇I

[√
−h hIJeJ

A + iΘ(
√
−h hIJ − εIJΓ11)

(

ΓA∇JΘ+ 2i
R
eJ

BΓAP24γ
5ΓBΘ

)]

(2.3)

− i
4
Θ (

√
−h hIJ − εIJΓ11)ΓD

BCΘRBCE
A eI

DeJ
E = 0

where RBCE
A is the curvature of AdS4 × CP 3 (see Appendix A).

The Virasoro constraints are

eI
AeJ

BηAB − 2iΘ
(

e(I
AΓA∇J)Θ+ i

R
e(I

AeJ)
BΓAP24γ

5ΓBΘ
)

(2.4)

= 1
2
hIJ h

KL
[

eK
A eL

BηAB − 2iΘ
(

eK
AΓA∇LΘ+ i

R
eK

AeL
BΓAP24γ

5ΓBΘ
)]

,

where the round brackets embracing the indices denote symmetrization X(IYJ) =
1
2
(XIYJ +

XJYI).
The fermionic equations are

(
√
−h hIJ−εIJΓ11)

(

eI
AΓA∇JΘ+

i

R
eI

AeJ
BΓAP24γ

5ΓBΘ
)

−1

2
∇I(

√
−h hIJeJ

A)ΓAΘ = 0 . (2.5)

In virtue of the bosonic equations (2.3), the last term in (2.5) is of the third order in fermions
and can be skipped in the linear approximation.

2.1.1 Comment on the relation to the supercoset sigma–model

When the fermionic fields υ are zero the superstring equations of motion reduce to the bosonic
equation

∇I

[√
−h hIJeJ

A + iϑ(
√
−h hIJ − εIJΓ11)

(

ΓA∇Jϑ+ 2i
R
eJ

BΓAP24γ
5ΓBϑ

)]

− i
4
ϑ (

√
−h hIJ − εIJΓ11)ΓD

BCϑRBCE
A eI

DeJ
E = 0 (2.6)

and the fermionic equations

(
√
−h hIJ − εIJΓ11) eI

AP24ΓAP24

(

∇Jϑ+ i
R
eJ

Bγ5ΓBϑ
)

= 0 , (2.7)

(
√
−h hIJ − εIJΓ11) eI

A(1− P24)ΓAP24

(

∇Jϑ+ i
R
eJ

Bγ5ΓBϑ
)

= 0. (2.8)

Eqs. (2.6) and (2.7) are the equations of motion of the OSp(6|4) supercoset sigma–model in
the quadratic approximation in fermions. However, the complete Green–Schwarz superstring
action gives one more fermionic equation of motion which (when υ = 0) produces an additional
equation for the 24 fermions ϑ (2.8). This eight–component equation does not directly follow
from the supercoset action, but it should not be independent of (2.7) and just manifests the
fact that, when the partial kappa–symmetry gauge υ = 0 is admissible, the residual kappa–
symmetry of the supercoset model has eight independent components, such that the number
of physical fermionic modes of ϑ is sixteen.
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To show that the fermionic equations (2.7) and (2.8) are linearly dependent let us rewrite
them in an equivalent form as follows

P24(1− Γ) hIJeI
AΓAP24

(

∇Jϑ+ i
R
eJ

Bγ5ΓBϑ
)

= 0 , (2.9)

(1−P24)(1− Γ) hIJ eI
AΓAP24

(

∇Jϑ+ i
R
eJ

Bγ5ΓBϑ
)

= 0 , (2.10)

where Γ = 1
2
√
−h

εIJeAI eBJ ΓABΓ11, (Γ)
2 = 1 and 1

2
(1 − Γ) is the canonical kappa–symmetry

projector of the type IIA superstring. The two equations can, therefore, be combined into

(1− Γ) hIJeI
AΓAP24

(

∇Jϑ+
i

R
eJ

Bγ5ΓBϑ
)

= 0 . (2.11)

We shall now show that eq. (2.11) actually follows from eq. (2.9). To this end let us note
that in the sector of classical string solutions in which the kappa–symmetry gauge υ = 0 is
admissible, the projectors P24 and 1

2
(1 ± Γ) do not commute [1], their commutator [Γ,P24]

being a non degenerate matrix. Therefore, multiplying eq. (2.9) by (1 + Γ) we have

[Γ,P24] (1− Γ) hIJeI
AΓAP24

(

∇Jϑ+
i

R
eJ

Bγ5ΓBϑ
)

= 0 . (2.12)

Since [Γ,P24] is invertible we can multiply the above equation by the inverse of [Γ,P24] and
get eq. (2.11) from which the equation (2.10) follows.

On the other hand, in the sub–sector in which the classical string moves in AdS4 only
(i.e. the CP 3 embedding coordinates ym

′

are constants), this kappa–gauge is not admissible
([Γ,P24] = 0) and putting υ to zero results in loosing four physical fermionic modes associated
with υ [3, 1]. This can be seen from the structure of the fermionic equations (2.7) and (2.8) (or
(2.9) and (2.10)). Since ym

′

are constants and if υ is set to zero, eq. (2.8) (or (2.10)) vanishes
identically and one is left with eq. (2.7) (or (2.9)) which, since the projector P24 commutes
with the Γâ along the AdS4 directions, reduces to the fermionic equation in AdS4

(1− Γ) hIJ eI
â(x)Γâ

(

∇Jϑ+
i

R
eJ

b̂γ5Γb̂ϑ
)

= 0 . (2.13)

where now Γ = 1
2
√
−h

εIJeI
âeJ

b̂ Γâb̂Γ11, (Γ)
2 = 1. The projector 1

2
(1−Γ) (which now commutes

with P24) implies that among 24 equations (2.13) only 12 are independent. Hence ϑ contain
only 12 physical modes while the total number must be sixteen. The missing four physical
fermions are half of υ which were put to zero ‘by hand’, while another half of υ can be gauged
away by kappa–symmetry.

2.2 Noether currents

Under the OSp(6|4) isometries the Type IIA superspace coordinates XM and Θ transform as
follows (up to the second order in fermions)

δXM eM
A(X) = KA(X) + iΘΓA Ξ(X),

δϑ = P24δΘ = Ξ(X) + 1
4
(KM ωM

AB(X)−∇AKB)P24ΓABP24Θ , (2.14)

δυ = (1−P24) δΘ = 1
4
(KM ωM

AB(X)−∇A KB) (1− P24) ΓAB (1− P24) Θ,
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where KA(X) = KM(X) eM
A(X) are the AdS4×CP 3 Killing vectors. More precisely, KA(X)

are the Killing vectors KA
I (X) contracted with constant SO(2, 3) × SU(4) transformation

parameters ΛI , i.e. KA(X) = KA
I (X) ΛI , where I is associated with the 25 generators of

the SO(2, 3)× SU(4) isometries. Note that, like the spin connection ωAB, ∇AKB = −∇BKA

takes values in the stability subalgebra so(1, 3)×u(3) of the AdS4×CP 3 isometry. Properties
of the Killing vectors of symmetric spaces G/H are given in Appendix D .
Ξ are 24 supersymmetry parameters of OSp(6|4) satisfying the AdS4 × CP 3 Killing spinor
equation

∇Ξ +
i

R
eA P24γ

5ΓAΞ = 0 , Ξα(X) = ǫµ Ξµ
α(X), Ξ ≡ P24 Ξ(X) , (2.15)

Ξµ
α(X) are AdS4 × CP 3 Killing spinors and ǫµ = (P24ǫ)

µ are 24 constant Grassmann–odd
parameters.

Note that the terms in the variation of the fermions which are proportional to ΓAB are
the compensating SO(1, 3)× U(3) stability group transformations induced by the isometries
in the (co)tangent space of AdS4 × CP 3. Note also that in the linear order in fermions the
eight spinor fields υ are not transformed by supersymmetry. The action of the isometry group
OSp(6|4) on these fermions is such that it takes the form of induced SO(1, 3)×U(1) rotations
with parameters depending on X , ϑ and the OSp(6|4) parameters

δυ =
1

4
ΛAB(ǫ,X, ϑ) ΓAB υ . (2.16)

Therefore, the first nontrivial term in the supersymmetry variation of υ is quadratic in fermionic
fields.

To avoid possible confusion, let us note that in the expressions for the conserved currents
and in the Lax connections considered below, KA(X) and Ξ(X) stand for the Killing vec-
tors and spinors contracted with the corresponding bosonic and fermionic generators of the
OSp(6|4) isometry (see Appendix A.4) and not with constant parameters like in eqs. (2.14)
and (2.15).

The following relations between the Killing vectors and spinors contracted with theOSp(6|4)
generators reflect the structure of the OSp(6|4) superalgebra (A.8)–(A.10)

KA(X)
.
= k(X)PAk

−1(X) , γ5Ξ(X)
.
= k(X)Qk−1(X) , (2.17)

∇AKB
.
= −1

2
RAB

CD k(X)MCDk
−1(X) ,

where k(X) is an SO(2,3)×SU(4)
SO(1,3)×U(3)

coset element of the bosonic isometry, and

[KA,Ξ] = − i
R
ΞΓAγ

5P24 ,

[∇AKB,Ξ] = −1
4
RAB

CDΞΓCDP24 , (2.18)

{Ξ,Ξ} = 2iP24γ
5ΓAγ5P24KA − R

2
P24Γ

ABγ5P24 ∇AKB .

The conserved Noether current associated with the SO(2, 3) × SU(4) invariance of the
action (2.1) is

JI
B =

√
−h hIJ eJ

AKA + iΘ(
√
−h hIJ − εIJΓ11)

[

ΓA∇JΘ+
2i

R
eJ

BΓAP24γ
5ΓBΘ

]

KA

(2.19)

− i

4
Θ(

√
−h hIJ + εIJΓ11) eJ

A ΓA
BCΘ∇B KC

7



and the conserved (fermionic) supersymmetry current (up to the leading order in fermions) is

JI
F =

i

2R

(√
−h hIJ eJ

A ΘΓAΞ + Θ(
√
−h hIJ + 2εIJΓ11) eJ

A ΓAΞ(X)
)

=
i

R
Θ(

√
−h hIJ + εIJΓ11) eJ

A ΓAΞ(X) , (2.20)

where the factor of 2 in the last term of the first line appears because the action is invariant
under supersymmetry only up to a boundary term which must therefore be subtracted from the
current to make it conserved. The currents are normalized to be dimensionless (the dimensions
of Ξ and KA are 1/

√
R and 1/R respectively). The sum of JB and JF is the conserved current

taking values in the OSp(6|4) superalgebra

J = JB + JF . (2.21)

Let us now compare this current with the conserved current of the OSp(6|4) supercoset sigma–
model which describes the string with υ = (1−P24)Θ = 0. As we have mentioned in the Intro-
duction, the supercoset model conserved current has the following form (in our conventions)

Jcoset(X, ϑ) = K(X, ϑ) ΛK−1(X, ϑ)
.
= K(X, ϑ)

(

EAPA +
1

2
QΓ11 ∗ E

)

K−1(X, ϑ) , (2.22)

where EA(X, ϑ) and Eα(X, ϑ) are components of the OSp(6|4)–valued Cartan form

K−1dK(X, ϑ) = EAPA + EαQα +
1

2
ΩABMAB, (2.23)

ΩAB(X, ϑ) is the spin connection on OSp(6|4)
SO(1,3)×U(3)

and K(X, ϑ) is a coset representative. Up to

the second order in fermions the supervielbeins and spin connection of the OSp(6|4) supercoset
are given by

EA = eA(X) + iϑΓA E , (2.24)

Eα = ∇ϑα +
i

R
eB (P24γ

5ΓB ϑ)α ,

ΩAB = ωAB(X)− 2

R
ϑΓ[AP24γ5Γ

B]E .

The current (2.22) is conserved (d ∗ Jcoset = 0) as a consequence of the sigma–model equations
of motion

d ∗ Λ− [K−1dK, ∗Λ] = 0. (2.25)

Using a supercoset element of the form K = k(X) eϑQ, the OSp(6|4) superalgebra (Appendix
A.4) and eqs. (2.17) we then have

Jcoset = EAKA + eAkϑ[Q,PA]k
−1 +

1

2
eAk[ϑQ, [ϑQ, PA]]k

−1 +
1

2
kQk−1Γ11 ∗ E

+
1

2
kϑ{Q,Q}Γ11 ∗Ek−1

= J |υ=0 −
R

8
∗ d(ϑΓABγ7ϑ∇AKB)−

1

2
∗ d(Ξγ7ϑ) , (2.26)
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where J = JB + JF (2.21) is the Noether current directly derived from the quadratic Green-
Schwarz action. The two conserved currents therefore differ only by total derivative terms, as
should be the case. A useful relation in checking eq. (2.26) is

P24Γ[AP24γ
5ΓB]P24 = −R2

8
RAB

CDP24ΓCDγ
5P24 . (2.27)

2.3 Lax connections to the second order in fermions

2.3.1 The supercoset sigma–model Lax connection

The Lax connection (1.5) of the OSp(6|4) supercoset sigma–model can be written in the
following form in terms of the conserved current (2.22) and components of the Cartan form
(2.23)

Lcoset = K
(

α1E
APA + α2 ∗ EAPA + β1QΓ11E + (1 + β2)QE

)

K−1

= K
(

α1E
A PA + (1 + β2)QE + (β1 −

α2

2
)QΓ11E

)

K−1 + α2 ∗ Jcoset , (2.28)

where

α1 =
2z2

1− z2
,

α2
2 = α2

1 + 2α1 ,

β1 = ∓
√

α1

2
,

β2 = ± α2√
2α1

. (2.29)

The specific dependence of the coefficients on the spectral parameter z ensures the zero cur-
vature of the Lax connection1 [13, 3, 4]. Note that the Z4–automorphism splitting of the
fermionic OSp(6|4) generators Q and the corresponding fermionic components of the Cartan
form is simply made by the D = 10 chirality projectors 1

2
(1∓ Γ11) (see Appendix A.4).

2.3.2 Lax connection of the complete AdS4 × CP 3 superstring

When the extra eight fermionic degrees of freedom υ are switched on, they contribute to
the supervielbeins, superconnection, conserved current and equations of motion and, as a
consequence, the form of the Lax connection should be modified to account for this. In
contrast to the case of the OSp(6|4) supercoset Z4–grading, it is not obvious which is the
group–theoretical structure that would allow one to guess the dependence of L on υ. So,
to find this dependence we shall use a brute–force method, i.e. we will try to build the Lax
connection out of components of the conserved currents JB (2.19) and JF (2.20), which depend
on the extra fermions υ, by introducing them with arbitrary coefficients in the Lax connection.

1The numerical coefficients in eq. (2.28) are related to those in eq. (1.3) and those of [3] (eq.(4.1) therein)
as follows α1 = l1 − 1, α2 = l2, β1 = l3−l4

2
and β2 = − l3+l4

2
.
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The dependence of these coefficients on the spectral parameter is then determined by the zero–
curvature condition. This procedure is akin to the construction of Lax connections for two–
dimensional supersymmetric non–linear sigma–models considered in [16]. The Lax connection
constructed in this way has the following form

L = LB + LF (2.30)

where the bosonic isometry part is

LB = α1e
AKA + α2 ∗ JB + α2

2J
AB∇AKB + α1α2 ∗ JAB∇AKB , (2.31)

and the supersymmetry part is

LF = −α2β1JF + α2β2 ∗ JF . (2.32)

JAB stands for the term in the bosonic isometry current (2.19) which is contracted with ∇AKB,
namely JB = JAKA + JAB∇AKB, and α1, α2, β1 and β2 are the same as in (2.29).

It is not very difficult to verify that this Lax connection indeed has zero curvature. To
check the zero–curvature condition one should use the conservation of the Noether current,
the equations of motion as well as the relations

∇JAB = −e[A(JB] − eB])− 1

2R
eCeD ΘΓCP24Γ

ABγ5P24ΓDΘ

+
1

2R
eC ∗ eD ΘΓCP24Γ

ABγ5P24ΓDΓ11Θ ,

(2.33)

dJF =
i

R
d(eA ΘΓAΞ− ∗eAΘΓAΓ11Ξ)

=
2

R2
eAeB ΘΓAP24γ

5ΓBΞ− 2

R2
eA ∗ eB ΘΓAP24γ

5ΓBΓ11Ξ

and the symmetry properties of the Γ–matrices.
Note that the construction of this Lax connection does not make use (at least directly) of

the Z4–grading of the OSp(6|4) superalgebra but only the Z2–grading of its bosonic subalgebra.
Its form is different from the υ–fermion extension of the supercoset Lax connection (2.28) (e.g.
the former does not have terms linear in dΘ, while such terms are present in the latter). We
will now show that the two Lax connections are related by an OSp(6|4) gauge transformation.

2.3.3 Relation to the supercoset Lax connection

When υ = 0 the Lax connection (2.30) constructed above should be related to the supercoset
Lax connection in eq. (2.28) by a gauge transformation, so that

Lcoset = g−1L|υ=0 g + g−1dg . (2.34)

for some g ∈ OSp(6|4). It is possible to show that this is indeed the case and with a bit of
algebra one finds that the supergroup element

g(X, ϑ;α2, β1, β2) = k(X) e
α2R

16
ϑΓABγ7ϑRAB

CDMCD e−β1ϑΓ11Q e−(1+β2)ϑQ k−1(X)

= e−
α2R

8
ϑΓABγ7ϑ∇AKB eβ1ϑγ7Ξ e−(1+β2)ϑγ5Ξ (2.35)
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does the job. If we apply this gauge transformation to the Lax connection L (2.30) without
setting υ to zero we obtain the supercoset Lax connection extended with the terms up to
quadratic order in υ

L = g−1Lg + g−1dg . (2.36)

The Lax connections constructed above have zero curvatures only up to the quadratic
order in fermions. To get zero curvature also at quartic and higher orders in fermions one
should add to the Lax connection (2.30) or (2.36) corresponding higher–order fermionic υ–
terms with appropriate coefficients at each order. We have not been able to find a generic
prescription for the construction of such terms from the components of the conserved currents
of the complete AdS4×CP 3 superstring, and the brute force computation becomes technically
more and more involved with each new order in fermions. So to simplify the analysis we shall
turn to the consideration of a simpler AdS4 sub–sector of the theory in which the problem
of the construction of the Lax connection can be completely solved at least in a particular
kappa–symmetry gauge.

3 String in N = 2 AdS4 superspace

As has been shown in [1] the structure of the AdS4 × CP 3 superstring action and equations
of motion allows one to consistently truncate this theory to a model describing a string prop-
agating in a four–dimensional superbackground with eight fermionic directions parameterized
by υ = (1 − P24)Θ. The bosonic subspace of this superbackground is AdS4 but it does not
preserve any supersymmetry2. This model is obtained by putting to zero the 24 supersym-
metric fermionic fields ϑ = P24 Θ = 0 and restricting the string to move entirely in AdS4 (i.e.
the CP 3 embedding coordinates are worldsheet constants). It is, therefore, not described by
the supercoset sigma–model of [3, 4, 5, 6, 7]. Lacking supersymmetry this model is also not

the OSp(2|4)
SO(1,3)×SO(2)

supercoset sigma–model [1]. Nevertheless, it possesses the four–parameter

kappa–symmetry in addition to the purely bosonic isometry SO(2, 3) of AdS4 and the SO(2)
symmetry rotating the two D = 4 Majorana fermions. So it is somewhat surprising that this
model turns out to be integrable, and the integrability of its fermionic sector is not at all
related to target space supersymmetry which is lacking.

Let us consider this model in more detail. It is convenient to represent the eight–component
spinors υ = (1 − P24)Θ as four–component Majorana spinors in AdS4, υ

αi (α = 1, 2, 3, 4),
carrying the internal SO(2) index i = 1, 2. This SO(2) is a relic of the U(1) gauge symmetry
associated with the RR one–form field of D = 10 type IIA supergravity. The Green–Schwarz
action for the superstring moving in this AdS4 superspace has the following form [1]

S = − 1

4πα′

∫

d2ξ
√
−h hIJ EI âEJ b̂ηâb̂ −

1

2πα′

∫

B2 , (3.1)

where the vector supervielbeins E â = dxm̂ Em̂â + dυαiEαiâ along the AdS4 directions of the

2A somewhat analogous non–supersymmetric AdS4 vacuum was found in a matter–coupled N = 2, D = 4
supergravity in [17].
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target superspace are

E â(x, υ) = e
1

3
φ(υ)

(

eb̂(x) + 4iυγ b̂ sinh
2M/2

M2
Dυ

)

Λb̂
â(υ)

+ e−
1

3
φ(υ) 4R

klp
υ εγ5 sinh

2M/2

M2
Dυ V â(υ) ,

(3.2)

and the NS–NS superform B2 is expressed through components of its field strength H3 = dB2

as follows

B2 =

∫ 1

0

dt iυH3(x, tυ) . (3.3)

H3 = dB2 = − 1

3!
E ĉE b̂E â(

6

klp
e−φεâb̂ĉd̂V

d̂) + E âEβjEαi(γâγ
5)αβ εij − E b̂E âEαi(γâb̂γ

5 ελ)αi ,

(3.4)
where Eαi(x, υ) are the fermionic supervielbeins

Eαi(x, υ) = e
1

6
φ(υ)

(

sinhM
M Dυ

)βj

Sβj
αi (υ)− ieφ(υ)A1(x, υ) (γ

5ελ(υ))αi (3.5)

and A1(x, υ) is a relic of the type IIA RR one–form

A1(x, υ) =
R

klp
e−

4

3
φ(υ)

[(

eâ(x) + 4iυγâ sinh
2M/2

M2
Dυ

)

Vâ(υ)− 4υ εγ5 sinh
2M/2

M2
DυΦ(υ)

]

.

(3.6)
Note that A1 is zero when υ = 0.

The AdS4 covariant derivative D is defined as

Dυ =

(

∇+
i

R
eâ(x) γ5γâ

)

υ =

(

d− 1

4
ωâb̂(x) γâb̂ +

i

R
eâ(x) γ5γâ

)

υ (3.7)

and γâ, γ5 are the four–dimensional gamma–matrices in the Majorana representation.
The dilaton superfield φ(υ), which depends only on the eight fermionic coordinates, has

the following form in terms of the quantities V â(υ) and Φ(υ)

e
2

3
φ(υ) =

R

klp

√

Φ2 + V â V b̂ ηâb̂ . (3.8)

The value of the dilaton at υ = 0 is

e
2

3
φ(υ)|υ=0 = e

2

3
φ0 =

R

klp
(3.9)

(lp is the Plank’s length and k corresponds to the Chern–Simons level in the ABJM model).
The fermionic field λαi(υ) describes the non–zero components of the dilatino superfield which
is related to the dilaton superfield by the equation [18]

λαi = − i

3
Dαi φ(υ) . (3.10)
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The new objects appearing in these expressions, M, Λâ
b̂, Φ, V â and Sαi

βj , are functions
of υ and their explicit forms are given in Appendix B. Contracted spinor indices have been
suppressed, e.g. (υεγ5)αi = υβjεjiγ

5
βα, where εij = −εji, ε12 = 1 is the SO(2) invariant tensor.

As we have already noted, in the AdS4 superspace under consideration all supersymmetries
are broken and it only has the bosonic AdS4 isometry SO(2, 3). The superstring action (3.1)
is thus invariant under the SO(2, 3) variations of the coordinates

δxm̂ em̂
â(x) = K â(x) = Km̂(x) em̂

â , δυ =
1

4
(Km̂ ωm̂

âb̂(x)−∇â K b̂) γâb̂ υ. (3.11)

The associated conserved SO(2, 3) current has the following form

JI =
√
−h hIJ EJ â (iδx E b̂ + iδυ E b̂) ηâb̂ − εIJ (iδx B2 + iδυ B2)J . (3.12)

Due to the complicated form of the supervielbein and B2, the explicit dependence of this
current on υ is still a bit too involved to try to construct a Lax connection. So we shall further
simplify things by gauge fixing kappa–symmetry in a way considered in [9].

4 Gauge fixed superstring action in AdS4 superspace

Let us choose the AdS4 metric in the conformally flat form

ds2
AdS4

=
1

u2
(dxaηabdx

b +
R2

CP 3

4
du2) , u =

(

RCP 3

r

)2

, (4.1)

where xa (a = 0, 1, 2) are the coordinates of the D = 3 Minkowski boundary and u (or r) is
the AdS4 radial coordinate. If the components of the AdS4 vielbein associated with the metric
(4.1) are chosen to be3

e
φ0
3 ea =

r2

R2
CP 3

dxa = u−1 dxa , e
φ0
3 e3 =

RCP 3

r
dr = −RCP 3

2u
du, (4.2)

the components of the SO(1, 3) spin connection are

ωa3 = − 2

R
ea , (4.3)

and
ωab = 0 , (4.4)

where the index 3 stands for the 3rd (radial) direction in AdS4.
The following kappa–symmetry gauge fixing condition on υ drastically simplifies the form

of the superstring action

υ =
1

2
(1 + γ012) υ , γ012 ≡ γ , (4.5)

3Note that the vielbeins ea and e3 appearing in eq. (4.2) correspond to the AdS4 metric of the D = 11
AdS4 × S7 solution characterized by the radius R which is related to the CP 3 radius in the string frame as

follows RCP 3 = e
1

3
φ0R =

(

R3

klp

)1/2

. These bosonic vielbeins appear in our explicit expressions for the AdS4

supergeometry.
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where γ012 is the product of the gamma matrices along the 3d Minkowski boundary slice of
AdS4.

In this gauge the supervielbeins take the following simple form [9]

Ea(x, υ) = (
R

klp
)1/2(ea(x) + iυγaDυ) (1− 1

R2
(υυ)2) ,

E3(x, υ) = (
R

klp
)1/2e3(x) (1− 3

R2
(υυ)2) ,

(4.6)

and the covariant derivative becomes

Dυ =

(

d− 1

R
e3(x)− 1

4
ωab(x) γab

)

υ . (4.7)

Actually, the SO(1, 2) Lorentz connection ωab is zero when the AdS4 supervielbeins are taken
in the form (4.2).

The NS-NS two form becomes

B2 = − i

klp

[

(eb + iυγbDυ) (ea + iυγaDυ) υγcευ εabc − Re3 υεDυ
]

. (4.8)

The kappa–symmetry gauge–fixed superstring action reduces to

S = − 1

4πα′
R

klp

∫

d2ξ
√
−h hIJ

[

eI
3eJ

3 (1− 6

R2
(υυ)2)

+ (eI
a + iυγaDIυ) (eJ

b + iυγbDJυ) ηab (1−
2

R2
(υυ)2)

]

(4.9)

+
1

2πα′
i

klp

∫

[

(eb + iυγbDυ) (ea + iυγaDυ) υγabευ − Re3 υεDυ
]

.

This action is slightly more complicated than the action for the AdS5 × S5 superstring in the
analogous kappa–symmetry gauge [19]. The latter contains fermions only up to the fourth
order.

In this kappa–symmetry gauge, the conserved SO(2, 3) current (3.12) has the following
explicit form

J =
√
−h hIJ eJ

âKâ + iυ(
√
−h hIJ − iεIJ γ5ε)γâ∇JυKâ

− i

4
υ(
√
−h hIJ + iεIJ γ5ε)γâ

b̂ĉ υ eJ
â∇b̂ Kĉ (4.10)

−
√
−h hIJ

[

(υυ)2

2R2
(eJ

aKa + 12 eJ
3K3) +

3 (υυ)2

8R
eJ

a (∇3Ka −∇a K3)−
υυ

4
εabc υγa∇Jυ∇bKc

]

− 3

2R
εIJ υγa∇Jυ υγ

abευKb −
1

8
εIJ υγa∇Jυ υγ

abευ(∇3Kb −∇b K3) ,

where remember that ε without indices implies εij = −εji with i, j = 1, 2 labeling the two
D = 4 Majorana fermions υαi. The first two lines in (4.10) are the same as in the quadratic
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current (2.19) reduced to AdS4 and with ϑ = 0. The third and the fourth line are quartic in
υ and its derivative.

The problem of the construction of the Lax connection thus becomes more treatable, but
we would like to simplify things even further.

4.1 Worldsheet T–dual action for the AdS4 superstring

Upon a T–duality transformation on the worldsheet [9], similar to that described in [19] 4, the
action (4.9) takes an even simpler form

S = − 1

4πα′
R

klp

∫

d2ξ
√
−h hIJ

(

ẽI
a ẽJ

b ηab + eI
3eJ

3
)

(1− 6

R2
(υυ)2)

(4.11)

− 1

2πα′
iR

klp

∫

(

e3 υεDυ + ẽa υγaDυ − 1

R
ẽa ẽb υγabευ

)

,

where e3(r) and ẽa(x̃, r) are the vielbeins of the dual AdS4 space. The dual vielbeins ẽa(x̃, r)
along the Minkowski directions are related to the initial quantities as follows (see [9] for more
details)

∂I (
r2

R2
P I
a ) = 0 ⇒ P I

a =
R2

r2
εIJ∂J x̃a ≡ εIJ ẽJa (4.12)

where

P I
a = −

√
−h (1− 2

R2
(υυ)2)

(

hIJηab +
2i

R
√
−h

εIJ υγabευ
)

(eJ
b + iυγbDJυ) . (4.13)

The quantities (4.13) (up to a rescaling) are the conserved currents of the d = 3 translation
part of the SO(2, 3) isometries

δ x̃a = ca, δ r = δ υ = 0 . (4.14)

The action (4.11) can be cast in the manifestly SO(1, 3) covariant form

S = − 1

2πα′
R

klp

∫

d2ξ

(

1

2

√
−h hIJ ẽI

â ẽJ
b̂ ηâb̂ (1−

6

R2
(υυ)2) + iεIJ ẽI

â υ(1− Γ11) γâ∇Jυ

)

,

(4.15)

where Γ11 stands for (1 − P24)γ
5 γ7(1 − P24) ≡ iγ5 ε which indicates its origin from D = 10

and ∇ = d− 1
4
ω̃âb̂ γâb̂.

4Note that in contrast to the AdS5 × S5 superstring where this bosonic T–duality can be accompanied by
a fermionic one [20, 21, 22] which brings the superstring action to itself but in a different kappa–symmetry
gauge, in the AdS4 ×CP 3 case the fermionic T–duality is not possible [23, 9], at least in the same fashion and
in application to the broken supersymmetry fermions υ. For an alternative suggestion to perform bosonic and
fermionic worldsheet T–duality of the AdS4 ×CP 3 supercoset model see [24, 25, 26] and for problems with its
realization see [27].
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The bosonic and fermionic equations of motion which follow from (4.15) are, respectively,

∇I

(√
−h hIJ ẽJ

â (1− 6

R2
(υυ)2) + iεIJ υ(1− Γ11) γ

â∇Jυ

)

− 2i

R2
εIJ ẽI

b̂ ẽJ
ĉ υ(1−Γ11) γ

â
b̂ĉυ = 0

(4.16)
and

i

2
(1 + γ)(1− Γ11) εIJ ẽI

â γâ∇J υ − 6

R2
υ (υυ)

√
−h hIJ ẽI

â ẽJ
b̂ ηâb̂ = 0 , (4.17)

The fermionic equation can also be rewritten in the following form

i
√
−hhIJ ẽJ

â (1− Γ11) γâ∇Iυ − 6

R2
εIJ ẽI

â ẽJ
b̂ (1− Γ11)γâb̂υ (υυ) = 0 , (4.18)

The conserved current of the SO(2, 3) isometry is

JI =

(√
−h hIJ ẽJ

â (1− 6

R2
(υυ)2) + iεIJ υ(1− Γ11) γ

â∇Jυ

)

Kâ+
i

4
εIJ ẽJ

â υ (1−Γ11) γâ
b̂ĉ υ∇b̂ Kĉ .

(4.19)

4.2 The Lax connection

As in the quadratic approximation of Section 2.3, we construct an SO(2, 3)–valued zero–
curvature Lax connection L

R = dL− LL = 0 =⇒ εIJ(∂I LJ + LI LJ) = 0 (4.20)

using the pieces of the conserved current (4.19) which enter the Lax connection with arbitrary
coefficients. The problem has a non–trivial solution if the zero–curvature condition allows
for expressing the coefficients in terms of a single spectral parameter. In the case under
consideration the zero–curvature Lax connection has the following form

LI = α1 ẽI
âKâ + α2

εIJ
−h

JJ +
α2
2√
−h

FI + α1α2
εIJ
−h

F J

− α2
2

4R2
υ (1− Γ11) γâ∇I υ υ (1− Γ11) γ

âb̂ĉ υ Kb̂ Kĉ (4.21)

+
3α2

2

2R2
(υυ)2 ẽI

â Kâ +
3α2(α1 + 2)

8
∂I

(

(υυ)2√
−G

εJK ẽJ
â ẽK

b̂ KâKb̂

)

,

where G = det(ẽI
â ẽJ

b̂ ηâb̂),

F I =
i

4
εIJ ẽJ

â υ (1− Γ11) γâ
b̂ĉ υ∇b̂ Kĉ =

i

2
εIJ ẽJ

â υ (1− Γ11) γâ
b̂ĉ υKb̂ Kĉ (4.22)

and (as in Section 2.3)
α2
2 = α2

1 + 2α1. (4.23)

So the Lax connection contains one independent (spectral) parameter α1 =
2z2

1−z2
.
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To check that (4.21) has zero curvature one should use the string equations of motion
(4.16)– (4.18), the Killing vector relations (Appendix D) and the Fierz identities (Appendix
C).

Note that in the kappa–symmetry gauge under consideration the Lax connection is of the
fourth order in fermions (as is the action (4.15) and the conserved current (4.19)).

Applying the inverse duality transformation (4.12) to (4.21) one gets the Lax connection for
the original model (4.9) which is non–local in the coordinates xa of the Minkowski boundary of
the AdS4 space (4.1), the non–local quantities being the Killing vectors KA(x̃(x), r) and their
derivatives ∇AKB(x̃(x), r) = [KA, KB] expressed in terms of the original AdS4 coordinates.
With some more technical effort, it should be possible to construct an alternative local Lax
connection of the model (4.9) directly from the conserved current (4.10). We leave this exercise
for future consideration.

5 Conclusion and Discussion

In this paper we have constructed the full Lax connection for the AdS4 sub–sector of the
AdS4 × CP 3 superstring with eight ‘broken supersymmetry’ fermionic modes which is not
described by the supercoset sigma–model. Because of the technical complexity of the problem,
the construction has been carried out for the kappa–symmetry gauge fixed and worldsheet
T–dualized action of the theory. For a generic (semi)classical configuration of the AdS4×CP 3

superstring with 32 fermionic fields (which are not subject to a kappa–symmetry gauge fixing)
we have constructed the Lax connections up to the second order in the fermionic fields. These
results provide a direct evidence for the classical integrability of the complete AdS4 × CP 3

superstring theory.
It would be useful, though, to find a procedure for the construction of a Lax connection

of the complete theory to all orders in the thirty two fermions. A hint at a possible method
to achive this goal may come from the construction of Lax connections in two–dimensional
supersymmetric O(N) and CPN sigma–models. When these sigma–models are formulated
in components of corresponding d = 2 supermultiplets, a prescription for constructing the
Lax connection was proposed in [16] which, as we have already mentioned, has prompted the
techniques used in this paper. A more systematic way of constructing the Lax connections
for these supersymmetric sigma–models is in the framework of their worldsheet superfield
description which allows one to operate with a corresponding Cartan superform or a conserved
super–current in the worldsheet superspace rather than with their components [28, 29, 30].

One can try to develop similar methods for studying the classical integrability of Green–
Schwarz superstrings in the framework of the superembedding approach (see [31, 32, 33] for
review and references). The superembedding description of superparticles, superstrings and
superbranes is based on the fact that the worldsheet kappa–symmetry is a somewhat weird
realization of the conventional extended worldsheet supersymmetry [34]. The dynamics of
p–branes is described by an embedding of a worldsheet supersurface into a target superspace
subject to a certain superembedding condition. The embedding super–coordinates XM and
Θα of a superstring in this formulation are therefore worldsheet superfields, as in the case of
two–dimensional supersymmetric sigma–models and the Ramond–Neveu–Schwarz strings. A
difference is that in the latter the component (bosonic and fermionic) worldsheet fields are
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in the same supermultiplet, while in the superembedding approach X and Θ are (a priori) in
different supermultiplets and corresponding superfields. However, these superfields are related
to each other by the superembedding constraint which (at least in some cases) can be solved
in terms of a single ‘prepotential’. The superembedding formulation is intrinsically related to
super–twistors [34, 35, 36] and pure–spinors [37, 38]. It has proved to be extremely useful e.g.

for the derivation of the M5–brane equations of motion [39, 40] and for making progress in the
covariant description of multiple coincident branes [41, 42, 43, 44, 45].

To construct a Lax connection for a superstring in the superembedding approach one
should first derive a conserved worldsheet supercurrent associated with the superisometry of
the supergravity background under consideration and then try to use it in combination with
a spectral parameter for building the worldsheet superfield Lax connection. The expansion of
this Lax connection in worldsheet superfield components should then reproduce the form of
Lax connections considered in this paper to all orders in fermions. We hope to address this
problem in the near future.

Other possible applications and development of the results of this paper can be the gener-
alization to the complete AdS4 × CP 3 superstring of the algebraic curve constructed in [46]
and the study of the integrability of type IIB superstrings compactified on AdS3×S3×S3×S1

and on AdS3 × S3 × T 4 (with 16 preserved supersymmetries) in those sectors which are not
described by corresponding supercoset sigma–models (see [47, 14] and references therein). An
even more interesting case is type II superstrings in an AdS2×S2×T 6 superbackground which
preserves only eight supersymmetries and is related to the near horizon geometry of D = 4
black holes [48]. In this case 16 independent kappa–symmetries are not enough to eliminate

24 ‘broken supersymmetry’ fermions and hence the PSU(1,1|2)
S0(1,1)×U(1)

supercoset sigma–model [49]
cannot be regarded as a kappa–gauge fixed description of this theory.

One may also look for other examples of integrable superstrings in superbackgrounds with
less or no supersymmetry, whose purely bosonic sub–sector is integrable. As we have seen in
Section 3, the superstring in the N = 2 AdS4 superspace is integrable in spite of the fact that
all the eight supersymmetries are broken. If we did not know that this non–supersymmetric
model is a truncation of the AdS4×CP 3 superstring, we would wonder what might be the rea-
son for its integrability. An obvious further example to check for integrability is the superstring
in the AdS4×CP 3 background with all supersymmetries broken. This superbackground is ob-
tained from the 24–supersymmetric solution by changing the sign of the F2 flux [50]. We have
not been able to construct a zero–curvature Lax connection for this case using the technique
developed in this paper. So it still remains to be understood what is the deep reason for the
integrability of the AdS4 × CP 3 superstring in the fermionic sub–sector corresponding to the
broken supersymmetries. Does this indicate that the superstring in AdS4 × CP 3 remembers
that it is obtained by the dimensional reduction of the maximally supersymmetric AdS4 × S7

superbackground of D = 11 supergravity [50, 51, 52]?
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Appendix A. Main notation and conventions

The convention for the ten–dimensional metric is the ‘almost plus’ signature (−,+, · · · ,+).
Generically, the tangent space vector indices are labeled by letters from the beginning of the
Latin alphabet, while letters from the middle of the Latin alphabet stand for curved (world)
indices. The spinor indices are labeled by Greek letters.

A.1 AdS4 space

AdS4 is parametrized by the coordinates xm̂ and its vielbeins are eâ = dxm̂ em̂
â(x), m̂ =

0, 1, 2, 3; â = 0, 1, 2, 3. The D = 4 gamma–matrices satisfy:

{γâ, γ b̂} = 2 ηâb̂ , ηâb̂ = diag (−,+,+,+) , (A.1)

γ5 = iγ0 γ1 γ2 γ3, γ5 γ5 = 1 . (A.2)

The charge conjugation matrix C is antisymmetric, the matrices (γâ)αβ ≡ (C γâ)αβ and

(γâb̂)αβ ≡ (C γâb̂)αβ are symmetric and γ5
αβ ≡ (Cγ5)αβ is antisymmetric, with α, β = 1, 2, 3, 4

being the indices of a 4–dimensional spinor representation of SO(1, 3) or SO(2, 3).
The AdS4 curvature is

Râb̂ĉ
d̂ =

8

R2
ηĉ[â δ

d̂
b̂]
, Râb̂ = − 4

R2
eâ eb̂ , (A.3)

where R
2
is the AdS4 radius.

A.2 CP 3 space

CP 3 is parametrized by the coordinates ym
′

and its vielbeins are ea
′

= dym
′

em′
a′(y), m′ =

1, · · · , 6; a′ = 1, · · · , 6. The D = 6 gamma–matrices satisfy:

{γa′ , γb′} = 2 δa
′b′ , δa

′b′ = diag (+,+,+,+,+,+) , (A.4)

γ7 =
i

6!
ε a′

1
a′
2
a′
3
a′
4
a′
5
a′
6
γa′

1 · · · γa′
6 γ7 γ7 = 1 . (A.5)

The charge conjugation matrix C ′ is symmetric and the matrices (γa′)α′β′ ≡ (C γa′)α′β′ and
(γa′b′)α′β′ ≡ (C ′ γa′b′)α′β′ are antisymmetric, with α′, β ′ = 1, · · · , 8 being the indices of an
8–dimensional spinor representation of SO(6).

The CP 3 curvature is

Ra′b′c′
d′ = − 2

R2

(

δc′[a′ δ
d′

b′] − Jc′[a′ Jb′]
d′ + Ja′b′ Jc′

d′
)

. (A.6)
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A.3 The D = 10 gamma–matrices ΓA

{ΓA, ΓB} = 2ηAB, ΓA = (Γâ, Γa′) ,

(A.7)

Γâ = γâ ⊗ 1, Γa′ = γ5 ⊗ γa′ , Γ11 = γ5 ⊗ γ7, â = 0, 1, 2, 3; a′ = 1, · · · , 6 .

The charge conjugation matrix is C = C ⊗ C ′.
The fermionic variables Θα of IIA supergravity carrying 32–component spinor indices of

Spin(1, 9), in the AdS4 × CP 3 background and for the above choice of the D = 10 gamma–
matrices, naturally split into 4–dimensional Spin(1, 3) indices and 8–dimensional spinor indices
of Spin(6), i.e. Θα = Θαα′

(α = 1, 2, 3, 4; α′ = 1, · · · , 8).

A.4 OSp(6|4) superalgebra
The bosonic part of theOSp(6|4) algebra is generated by translations and Lorentz-transformations
which split into AdS4 and CP 3 parts as PA = (Pâ, Pa′) and MAB = (Mâb̂,Ma′b′) respectively.
These satisfy the commutation relations

[PA, PB] = −1

2
RAB

CDMCD, [MAB, PC ] = ηAC PB − ηBC PA , (A.8)

[MAB,MCD] = ηAC MBD + ηBD MAC − ηBC MAD − ηAD MBC , (A.9)

where the curvature RAB
CD = (Râb̂

ĉd̂, Ra′b′
c′d′), and the AdS4 and CP 3 curvature are given in

(A.3) and (A.6) respectively. The fermionic part of the algebra consists of 24 supersymmetry
generators which can be described by 32–component Majorana spinor generators subject to
the projection Qα = (P24 Q)α (see eq. (2.2)). Their commutation relations are as follows

[PA, Q] = i
R
Qγ5ΓAP24 , [MAB, Q] = −1

2
QΓABP24 , (A.10)

{Q,Q} = 2i (P24Γ
AP24)PA + R

4
(P24γ

5ΓABP24)RAB
CDMCD ,

where γ5 = iΓ0Γ1Γ2Γ3. Note that the splitting of the fermionic generators Q into Q1 and Q3

by the Z4–grading of OSp(6|4) is simply achieved by splitting the D = 10 Majorana spinor Q
into the left– and right Majorana–Weyl spinors

Q1 =
1

2
Q (1− Γ11) , Q3 =

1

2
Q (1 + Γ11) . (A.11)

Appendix B. Quantities appearing in the definition of

the AdS4 × CP 3 superspace of Section 3

R (M2)αiβj = 4(ευ)αi(υεγ5)βj − 2(γ5γâυ)αi(υγâ)βj − (γâb̂υ)αi(υγâb̂γ
5)βj , (B.1)
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Λâ
b̂ = δâ

b̂ − R2

k2l2p
· e−

2

3
φ

e
2

3
φ + R

klp
Φ
Vâ V

b̂ ,

Sβj
αi =

e−
1

3
φ

√
2



(1−P24)





√

e
2

3
φ +

R

klp
Φ 1− R

klp

V â ΓâΓ11
√

e
2

3
φ + R

klp
Φ



 (1− P24)





βj

αi

(B.2)

V â(υ) = −8i

R
υγâ sinh

2M/2

M2
ε υ ,

Φ(υ) = 1 +
8

R
υ εγ5 sinh

2M/2

M2
ευ .

(B.3)

Let us emphasise that the SO(2) indices i, j = 1, 2 are raised and lowered with the unit
matrices δij and δij so that there is actually no difference between the upper and the lower
SO(2) indices, εij = −εji, ε

ij = −εji and ε12 = ε12 = 1.

Appendix C. Identities for the kappa-projected fermions

When the fermionic variables υαi are subject to the constraint (4.5), the following identities
hold.

υiγ5υj = υiγ3υj = 0 , υαiυβjδij = −1

4
((1 + γ)C−1)αβυυ , (C.1)

where γ = γ012 and υυ = δijυ
αiCαβυ

βj.
Another useful relation is (ε012 = −ε012 = 1)

υγabdυ = ±εabcυγ
cdυ . (C.2)

Using eqs. (C.1) and (C.2) we find that

υεγaυ υεγbυ = δab (υυ)
2 , υεγacυ υεγcbυ = 2δab (υυ)

2 , (C.3)

and

(M2ευ)αi = 0 . (C.4)

A similar computation shows that
υεγ5M2 = 0. (C.5)

It is also true in general (i.e. without fixing κ–symmetry) that

M2υ = 0 , υγ5M2 = 0. (C.6)

Using the above identities we find that for υ satisfying (4.5)

M2Dυ =
6i

R2
(ea +

R

2
ωa3)(γaυ) υυ (C.7)
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which results in

4υγa sinh
2(M/2)

M2
Dυ = υγa(1+

1

12
M2)Dυ = υγa (d−1

4
ωbcγbc)υ+

i

2R2
(ea+

R

2
ωa3)(υυ)2 , (C.8)

where ea, e3 ωbc and ωa3 are AdS4 vielbeins and connection defined in eqs. (4.2)–(4.4) and the
matrix M2 is defined in eq. (B.1).
We also find that

4υεγ5 sinh
2M/2

M2
Dυ = υεγ5Dυ =

i

R
(ea +

R

2
ωa3)υεγaυ . (C.9)

Other D = 4 covariant Fierz identities (â = (a, 3)) used in the construction of the Lax
connection in Section 4.2 are

εIJ ∇Iυ (1− Γ11) γâ∇J υ υ (1− Γ11) γ
âb̂ĉ υ − 2 εIJ υ (1− Γ11) γ

b̂ ∇I υ υ (1− Γ11) γ
ĉ∇J υ =

(C.10)

=
1

2
εIJ∇I

(

υ (1− Γ11) γâ∇J υ υ (1− Γ11) γ
âb̂ĉ υ

)

− 2

R2
εIJ eI

b̂ eJ
ĉ (υυ)2 ,

υ(1− Γ11)γâĉd̂υ υ(1− Γ11)γ b̂ĉd̂υ = −6δb̂â (υυ)
2 = 6υ(1− Γ11)γâγ5υ υ(1− Γ11)γ b̂γ5υ . (C.11)

where Γ11 stands for (1− P24)γ
5 γ7(1− P24) ≡ iγ5 ε which indicates its origin from D = 10.

Appendix D. Basic relations for the Killing vectors on

symmetric spaces G/H

Let KM(X) or KA(X) = eA
M(X)KM(X) be the Killing vectors of a D–dimensional symmetric

space G/H , where M are world indices and A are tangent space indices. The Killing vectors
KM(X) take values in the algebra of the isometry group G and the one–forms K = dXM KM

satisfy the Maurer–Cartan equations

dK = −2K ∧K, dK ∧K = K ∧ dK = −2K ∧K ∧K. (D.1)

The following relations also hold

[∇A,∇B]KC = −RABC
D KD , ∇AKB = [KA, KB], (D.2)

∇A∇BKC = [∇AKB, KC ] + [KB,∇AKC ] = [∇AKB, KC ]− [∇AKC , KB] = −2RA[BC]
DKD, (D.3)

[∇AKB, KC ] = [[KA, KB], KC ] = −RABC
D KD, (D.4)

[

[KA, KB], [KC , KD]
]

= RAB[C
F [KD], KF ]− RCD[A

F [KB], KF ] , (D.5)

where RABC
D is the curvature of the symmetric space G/H .

For instance, for the AdS4 Killing vectors we have

[∇â,∇b̂]Kĉ = −Râb̂ĉ
d̂ Kd̂ , Râb̂ĉ

d̂ = 8
R2 ηĉ[â δ

d̂
b̂]
, Râb̂ = − 4

R2 e
â eb̂ , (D.6)

∇âKb̂ = [Kâ, Kb̂], (D.7)

∇â∇b̂Kĉ = [∇âKb̂, Kĉ] + [Kb̂,∇âKĉ] = [∇âKb̂, Kĉ]− [∇âKĉ, Kb̂] =
8
R2 ηâ[b̂Kĉ], (D.8)

[∇âKb̂, Kĉ] = [[Kâ, Kb̂], Kĉ] = − 8
R2 ηĉ[âKb̂] (D.9)

[

[Kâ, Kb̂], [Kĉ, Kd̂]
]

= − 16
R2 (K[ĉ ηd̂][âKb̂] −K[â ηb̂][ĉKd̂]). (D.10)
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