32 research outputs found

    Education in Twins and Their Parents Across Birth Cohorts Over 100 years: An Individual-Level Pooled Analysis of 42-Twin Cohorts.

    Get PDF
    Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990-1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected

    Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study

    Get PDF
    Background: Both genetic and environmental factors are known to affect body mass index (BMI), but detailed understanding of how their effects differ during childhood and adolescence is lacking. Objectives: We analyzed the genetic and environmental contributions to BMI variation from infancy to early adulthood and the ways they differ by sex and geographic regions representing high (North America and Australia), moderate (Europe), and low levels (East Asia) of obesogenic environments. Design: Data were available for 87,782 complete twin pairs from 0.5 to 19.5 y of age from 45 cohorts. Analyses were based on 383,092 BMI measurements. Variation in BMI was decomposed into genetic and environmental components through genetic structural equation modeling. Results: The variance of BMI increased from 5 y of age along with increasing mean BMI. The proportion of BMI variation explained by additive genetic factors was lowest at 4 y of age in boys (a2 = 0.42) and girls (a2 = 0.41) and then generally increased to 0.75 in both sexes at 19 y of age. This was because of a stronger influence of environmental factors shared by co-twins in midchildhood. After 15 y of age, the effect of shared environment was not observed. The sex-specific expression of genetic factors was seen in infancy but was most prominent at 13 y of age and older. The variance of BMI was highest in North America and Australia and lowest in East Asia, but the relative proportion of genetic variation to total variation remained roughly similar across different regions. Conclusions: Environmental factors shared by co-twins affect BMI in childhood, but little evidence for their contribution was found in late adolescence. Our results suggest that genetic factors play a major role in the variation of BMI in adolescence among populations of different ethnicities exposed to different environmental factors related to obesity

    Educational attainment of same-sex and opposite-sex dizygotic twins: An individual-level pooled study of 19 twin cohorts.

    Get PDF
    Comparing twins from same- and opposite-sex pairs can provide information on potential sex differences in a variety of outcomes, including socioeconomic-related outcomes such as educational attainment. It has been suggested that this design can be applied to examine the putative role of intrauterine exposure to testosterone for educational attainment, but the evidence is still disputed. Thus, we established an international database of twin data from 11 countries with 88,290 individual dizygotic twins born over 100 years and tested for differences between twins from same- and opposite-sex dizygotic pairs in educational attainment. Effect sizes with 95% confidence intervals (CI) were estimated by linear regression models after adjusting for birth year and twin study cohort. In contrast to the hypothesis, no difference was found in women (β = -0.05 educational years, 95% CI -0.11, 0.02). However, men with a same-sex co-twin were slightly more educated than men having an opposite-sex co-twin (β = 0.14 educational years, 95% CI 0.07, 0.21). No consistent differences in effect sizes were found between individual twin study cohorts representing Europe, the USA, and Australia or over the cohorts born during the 20th century, during which period the sex differences in education reversed favoring women in the latest birth cohorts. Further, no interaction was found with maternal or paternal education. Our results contradict the hypothesis that there would be differences in the intrauterine testosterone levels between same-sex and opposite-sex female twins affecting education. Our findings in men may point to social dynamics within same-sex twin pairs that may benefit men in their educational careers

    Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994.

    Get PDF
    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve

    Education in Twins and Their Parents Across Birth Cohorts Over 100 years: An Individual-Level Pooled Analysis of 42-Twin Cohorts

    Get PDF
    Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990-1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected

    Hepatitis C and Non-Hodgkin Lymphoma Among 4784 Cases and 6269 Controls From the International Lymphoma Epidemiology Consortium

    No full text
    AIMS: Increasing evidence points towards a role of hepatitis C virus (HCV) infection in causing malignant lymphomas. We pooled case-control study data to provide robust estimates of the risk of non-Hodgkin's lymphoma (NHL) subtypes after HCV infection. METHODS: The analysis included 7 member studies from the International Lymphoma Epidemiology Consortium (InterLymph) based in Europe, North America, and Australia. Adult cases of NHL (n = 4784) were diagnosed between 1988 and 2004 and controls (n = 6269) were matched by age, sex, and study center. All studies used third-generation enzyme-linked immunosorbent assays to test for antibodies against HCV in serum samples. Participants who were human immunodeficiency virus positive or were organ-transplant recipients were excluded. RESULTS: HCV infection was detected in 172 NHL cases (3.60%) and in 169 (2.70%) controls (odds ratio [OR], 1.78; 95% confidence interval [CI], 1.40-2.25). In subtype-specific analyses, HCV prevalence was associated with marginal zone lymphoma (OR, 2.47; 95% CI, 1.44-4.23), diffuse large B-cell lymphoma (OR, 2.24; 95% CI, 1.68-2.99), and lymphoplasmacytic lymphoma (OR, 2.57; 95% CI, 1.14-5.79). Notably, risk estimates were not increased for follicular lymphoma (OR, 1.02; 95% CI, 0.65-1.60). CONCLUSIONS: These results confirm the association between HCV infection and NHL and specific B-NHL subtypes (diffuse large B-cell lymphoma, marginal zone lymphoma, and lymphoplasmacytic lymphoma)

    Self-reported history of infections and the risk of non-Hodgkin lymphoma: An InterLymph pooled analysis.

    No full text
    We performed a pooled analysis of data on self-reported history of infections in relation to the risk of non-Hodgkin lymphoma (NHL) from 17 case-control studies that included 12,585 cases and 15,416 controls aged 16-96 years at recruitment. Pooled odds ratios (OR) and 95% confidence intervals (95% CI) were estimated in two-stage random-effect or joint fixed-effect models, adjusting for age, sex and study centre. Data from the two years prior to diagnosis (or date of interview for controls) were excluded. A self-reported history of infectious mononucleosis (IM) was associated with an excess risk of NHL (OR=1.26, 95% CI=1.01-1.57 based on data from 16 studies); study-specific results indicate significant (I(2) =51%, p=0.01) heterogeneity. A self-reported history of measles or whooping cough was associated with an approximate 15% reduction in risk. History of other infection was not associated with NHL. We find little clear evidence of an association between NHL risk and infection although the limitations of data based on self-reported medical history (particularly of childhood illness reported by older people) are well recognised. © 2012 Wiley-Liss, In

    Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis

    No full text
    We performed a pooled analysis of data on atopic disease and risk of non-Hodgkin lymphoma (NHL) from 13 case-control studies, including 13,535 NHL cases and 16,388 controls. Self-reported atopic diseases diagnosed 2 years or more before NHL diagnosis (cases) or interview (controls) were analyzed. Pooled odds ratios (OR) and 95% confidence intervals (95% CI) were computed in two-stage random-effects or joint fixed-effects models, and adjusted for age, sex, and study center. When modeled individually, lifetime history of asthma, hay fever, specific allergy (excluding hay fever, asthma, and eczema), and food allergy were associated with a significant reduction in NHL risk, and there was no association for eczema. When each atopic condition was included in the same model, reduced NHL risk was only associated with a history of allergy (OR, 0.80; 95% CI, 0.68-0.94) and reduced B-cell NHL risk was associated with history of hay fever (OR, 0.85; 95% CI, 0.77-0.95) and allergy (OR, 0.84; 95% CI, 0.76-0.93). Significant reductions in B-cell NHL risk were also observed in individuals who were likely to be truly or highly atopic-those with hay fever, allergy, or asthma and at least one other atopic condition over their lifetime. The inverse associations were consistent for the diffuse large B-cell and follicular subtypes. Eczema was positively associated with lymphomas of the skin; misdiagnosis of lymphoma as eczema is likely, but progression of eczema to cutaneous lymphoma cannot be excluded. This pooled study shows evidence of a modest but consistent reduction in the risk of B-cell NHL associated with atopy
    corecore