775 research outputs found

    Crystal-liquid segregation in silicocarbonatite magma leads to the formation of calcite carbonatite

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordA suite of silicocarbonatite and lamprophyre rocks from SW Ireland, with mantle affinity and primitive composition, are used as a proxy for parental carbonated silicate magmas to model early magmatic evolution. Reconstruction of volatile ratios is validated using global occurrences. At 1200°C, the point at which melts transition from ionic liquids with exceptionally low viscosity (0.06 PaS) to covalently polymerised liquid (viscosity up to 1.3 PaS) is 33 mol% SiO2. Incremental and significant increase in magma density accompanies magma ponding, due to dehydration of magmas from model molar CO2/(CO2 + H2O) of 0.60 in plutonic settings to 0.75 for initial subvolcanic magmas. Magma-crystal density differences dictate that repeated influxes of magmas into an inflating magma chamber sustain a mechanical boundary layer between dense (silicate and oxide) mineral layers and a calcite ± phlogopite flotation assemblage. The range of critical CO2 concentration at which calcite floats (10–13 wt% CO2) may be extended by the presence of additional volatiles and fluid bubbles. The model accommodates a range of phenomena observed or inferred for alkaline/carbonatite complexes, including the following: 1, a growing calcite-dominated flotation assemblage with an apparently early magmatic mineralisation; 2, a residual liquid with high concentrations of incompatible metals; 3, variable carbonatite–pyroxenite–phoscorite rock relations; and 4, multiple phases of overprinting metasomatism.European Union Horizon 202

    Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 x 6 km) and slightly older (134.6 ± 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1–C3). Early C1 carbonatite is scarce and is composed of medium–coarse-grained calcite carbonatite containing zircons with a U–Pb age of 132.9 ± 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.Thanks are due to A. Lemon, A. Zabula, C. Mcheka, I. Nkukumila (Mkango Resources Ltd.), É. Deady (BGS) and P. Armitage (Paul Armitage Consulting Ltd.) for logistical support and enthusiastic discussions in the field. This contribution benefitted from reviews by Jindƙich KynickĂœ and Ray Macdonald, as well as anonymous reviewers, who we thank for their time and insightful comments. This work was funded by a NERC BGS studentship to SBF (NEE/J50318/1; S208), the NERC SoS RARE consortium (NE/M011429/1) and by Mkango Resources Ltd. AGG publishes with the permission of the Executive Director of the British Geological Survey (NERC)

    Enrichment of heavy REE and Th in carbonatite-derived fenite breccia

    Get PDF
    This is the final version. Available on open access from Cambridge University Press via the DOI in this recordEnrichment of the heavy rare earth elements (HREE) in carbonatites is rare as carbonatite petrogenesis favours the light (L)REE. We describe HREE enrichment in fenitised phonolite breccia, focussing on small satellite occurrences 1–2 km from the Songwe Hill carbonatite from the Chilwa Alkaline Province, Malawi. Within the breccia groundmass, a HREE-bearing mineral assemblage comprises xenotime, zircon, anatase/rutile, and minor huttonite/thorite, as well as fluorite and apatite. A genetic link between HREE mineralisation and carbonatite emplacement is indicated by the presence of Sr-bearing carbonate veins, carbonatite xenoliths and extensive fenitisation. We propose that the HREE are retained in hydrothermal fluids which are residually derived from a carbonatite after precipitation of LREE minerals. Brecciation provides a focussing conduit for such fluids, enabling HREE transport and xenotime precipitation in the fenite. Continued fluid-rock interaction leads to dissolution of HREE-bearing minerals and further precipitation of xenotime and huttonite/thorite. At a maximum Y content of 3,100 ÎŒg/g, HREE concentrations in the presented example are not sufficient to constitute ore, but the similar composition and texture of these rocks to other cases of HREE enrichment related to carbonatite suggests that all form via a common mechanism linked to fenitisation. Precipitation of HREE minerals only occurs where a pre-existing structure provides a focussing conduit for fenitising fluids, reducing fluid-country rock interaction. Enrichment of HREE and Th in fenite breccia serves as an indicator of fluid expulsion from a carbonatite, and may indicate the presence of LREE mineralisation within the source carbonatite body at depth.Natural Environment Research Council (NERC)European Union Horizon 202

    Developmental changes in the role of different metalinguistic awareness skills in Chinese reading acquisition from preschool to third grade

    Get PDF
    Copyright @ 2014 Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The present study investigated the relationship between Chinese reading skills and metalinguistic awareness skills such as phonological, morphological, and orthographic awareness for 101 Preschool, 94 Grade-1, 98 Grade-2, and 98 Grade-3 children from two primary schools in Mainland China. The aim of the study was to examine how each of these metalinguistic awareness skills would exert their influence on the success of reading in Chinese with age. The results showed that all three metalinguistic awareness skills significantly predicted reading success. It further revealed that orthographic awareness played a dominant role in the early stages of reading acquisition, and its influence decreased with age, while the opposite was true for the contribution of morphological awareness. The results were in stark contrast with studies in English, where phonological awareness is typically shown as the single most potent metalinguistic awareness factor in literacy acquisition. In order to account for the current data, a three-stage model of reading acquisition in Chinese is discussed.National Natural Science Foundation of China and Knowledge Innovation Program of the Chinese Academy of Sciences

    May Measurement Month 2017: an analysis of blood pressure screening results from the United Kingdom and the Republic of Ireland-Europe

    Get PDF
    Elevated blood pressure (BP), or hypertension, is a growing burden worldwide, leading to over 10 million deaths each year. May Measurement Month (MMM) is a global initiative aimed at raising awareness of high BP and acting as a stimulus to improving screening programmes worldwide. In the United Kingdom (UK) nearly 1 in 5 people, and in the Republic of Ireland (RoI) 3 out of 10, have hypertension, of which a large proportion remains undiagnosed. An opportunistic cross-sectional survey of volunteers aged ≄18 years was carried out in May 2017. Blood pressure measurement, the definition of hypertension and statistical analysis followed a standardized protocol. Screenings sites in hospitals, universities, shopping centres, workplaces, sports clubs, community centres, GP practices, and pharmacies were set up across the UK and RoI as part of this initiative. Seven thousand seven hundred and fourteen individuals were screened during MMM17. After multiple imputation, 3099 (40.3%) had hypertension. Of individuals not receiving antihypertensive medication, 1406 (23.4%) were hypertensive. Of individuals receiving antihypertensive medication, 682 (40.5%) had uncontrolled BP. MMM17 was the largest BP screening campaign ever undertaken in the UK and RoI. These data prove for the first time that a relatively inexpensive, volunteer based, convenience sampling of screening BP in the community identified two out of five individuals as hypertensive, with one in four not receiving treatment. Of major concern is that these data demonstrate that of those individuals receiving treatment, two out of five still did not have controlled BP

    Key process mineralogy parameters for rare earth fluorcarbonate-bearing carbonatite deposits: the example of Songwe Hill, Malawi

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordRare earth element (REE)-bearing carbonatite deposits commonly contain a wide range of different REE- and REE-bearing minerals associated with various gangue matrices. In order to select the most-suitable mineral processing technique for these deposits, it is essential to identify and quantify the minerals of interest, including their liberation, associations and grain size distribution, along with whole rock compositions. These data are also vital for ore feed optimisation and metallurgical troubleshooting during and after designing a mineral processing flowsheet. This paper summarises the key mineralogical parameters needed before conducting metallurgical beneficiation tests, using the Songwe Hill carbonatite deposit as an example. This REE ore deposit consists of poorly-liberated synchysite-(Ce), which hosts the light rare earth elements including Nd plus some heavy rare earths and well-liberated apatite, which hosts 50% of Gd, 63% of Dy and 71% of Y (heavy rare earth elements) in the deposit. For all REE heavier than Gd, apatite is the most important REE host, however, for the two REE where data are available in both synchysite-(Ce) and apatite (Dy and Y), synchysite27 (Ce) still accommodates >25% of the whole-rock HREE content. Both of these ore minerals are associated with ankerite, calcite, and to a lesser extent with iron oxides/carbonates, K-feldspar, strontianite and baryte. According to the quantitative mineralogical data, the possibility of using gravity separation, magnetic separation, froth flotation and leaching to process Songwe Hill carbonatite ore is discussed and a potential beneficiation flowsheet is presented.Mkango Resources LtdHigher Committee of Education Development in Iraq (HCED)Natural Environment Research Council (NERC)European Union Horizon 202

    May Measurement Month 2019: an analysis of blood pressure screening results from the United Kingdom and Republic of Ireland

    Get PDF
    In the UK, heart and circulatory diseases account for 29% of all deaths (14% through coronary heart disease and 8% through stroke). In 2015, the prevalence of hypertension was 20% in the UK and 23% in the Republic of Ireland. In 2019, 14% of people registered with a UK general practice had hypertension and yet it was the attributable risk factor for around half of all deaths from coronary heart disease or stroke. We participated in May Measurement Month 2019 to increase awareness of blood pressure (BP) measurement, and to identify the proportion of undiagnosed hypertension and degree of uncontrolled hypertension in the community. The 2019 campaign set up screening sites within the community at places of worship, supermarkets, GP surgeries, workplaces, charity events, community pharmacies, gyms, and various other public places. We screened 10194 participants (mean age 51 ± 18 years, 60% women) and found that 1013 (9.9%) were on antihypertensive treatment, while 3408 (33.4%) had hypertension. Of the 3408 participants with hypertension, only 33.5% were aware of their condition despite 98.8% having previous BP measurements. In those on antihypertensive medication, only 38.2% had controlled BP (<140 and <90 mmHg). Our UK and Republic of Ireland data demonstrate concerning levels of undiagnosed hypertension and sub-optimal BP control in many individuals with a diagnosis. This evidence supports a critical need for better systematic community and primary care screening initiatives

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Linearized stability analysis of gravastars in noncommutative geometry

    Full text link
    In this work, we find exact gravastar solutions in the context of noncommutative geometry, and explore their physical properties and characteristics. The energy density of these geometries is a smeared and particle-like gravitational source, where the mass is diffused throughout a region of linear dimension (α)\sqrt{(\alpha)} due to the intrinsic uncertainty encoded in the coordinate commutator. These solutions are then matched to an exterior Schwarzschild spacetime. We further explore the dynamical stability of the transition layer of these gravastars, for the specific case of ÎČ=M2/α<1.9\beta=M^2/\alpha<1.9, where M is the black hole mass, to linearized spherically symmetric radial perturbations about static equilibrium solutions. It is found that large stability regions exist and, in particular, located sufficiently close to where the event horizon is expected to form.Comment: 6 pages, 3 figure
    • 

    corecore