1,226 research outputs found

    Radiocarbon Chronologies and Extinction Dynamics of the Late Quaternary Mammalian Megafauna of the Taimyr Peninsula, Russian Federation

    Get PDF
    This paper presents 75 new radiocarbon dates based on late Quaternary mammal remains recovered from eastern Taimyr Peninsula and adjacent parts of the northern Siberian lowlands, Russian Federation, including specimens of woolly mammoth (Mammuthus primigenius), steppe bison (Bison priscus), muskox (Ovibos moschatus), moose (Alces alces), reindeer (Rangifer tarandus), horse (Equus caballus) and wolf (Canis lupus). New evidence permits reanalysis of megafaunal extinction dynamics in the Asian high Arctic periphery. Increasingly, radiometric records of individual species show evidence of a gap at or near the Pleistocene/Holocene boundary (PHB). In the past, the PHB gap was regarded as significant only when actually terminal, i.e., when it marked the apparent ‘‘last’’ occurrence of a species (e.g., current ‘‘last’’ occurrence date for woolly mammoth in mainland Eurasia is 9600 yr BP). However, for high Arctic populations of horses and muskoxen the gap marks an interruption rather than extinction, because their radiocarbon records resume, nearly simultaneously, much later in the Holocene. Taphonomic effects, ΔC14 flux, and biased sampling are unlikely explanations for these hiatuses. A possible explanation is that the gap is the signature of an event, of unknown nature, that prompted the nearly simultaneous crash of many megafaunal populations in the high Arctic and possibly elsewhere in Eurasia.

    Tris-N-alkylpyridinium-functionalised cyclotriguaiacylene hosts as axles in branched [4]pseudorotaxane formation

    Get PDF
    A series of [4]pseudorotaxanes composed of three-way axle threads based on the cyclotriguaiacylene family of crown-shaped cavitands and three threaded macrocyclic components has been achieved. These exploit the strong affinity for electron-poor alkyl-pyridinium units to reside within the electron-rich cavity of macrocycles, in this case dimethoxypillar[5]arene (DMP). The branched [4]pseudorotaxane= assemblies {(DMP)3∙L}3+,where L = N-alkylated derivatives of the host molecule (±)-tris-(isonicotinoyl)cyclotriguaiacylene, were characterised by NMR spectroscopy and mass spectrometry, and an energy-minimised structure of {(DMP)3∙(tris-(N-propyl-isonicotinoyl)cyclotriguaiacylene)}3+ was calculated. Crystal structures of N-ethyl-isonicotinoyl)cyclotriguaiacylene hexafluorophosphate and N-propyl-isonicotinoyl)cyclotriguaiacylene hexafluorophosphate each show ‘hand-shake’ self-inclusion motifs occurring between the individual cavitands

    Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model

    Get PDF
    Vegetable production in China is associated with high inputs of nitrogen, posing a risk of losses to the environment. Organic matter mineralisation is a considerable source of nitrogen (N) which is hard to quantify. In a two-year greenhouse cucumber experiment with different N treatments in North China, non-observed pathways of the N cycle were estimated using the EU-Rotate_N simulation model. EU-Rotate_N was calibrated against crop dry matter and soil moisture data to predict crop N uptake, soil mineral N contents, N mineralisation and N loss. Crop N uptake (Modelling Efficiencies (ME) between 0.80 and 0.92) and soil mineral N contents in different soil layers (ME between 0.24 and 0.74) were satisfactorily simulated by the model for all N treatments except for the traditional N management. The model predicted high N mineralisation rates and N leaching losses, suggesting that previously published estimates of N leaching for these production systems strongly underestimated the mineralisation of N from organic matter

    Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools.

    Get PDF
    Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations -- such as asymmetric connectivity -- to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically-defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically-projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically-projecting central population thus participates in both up and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially-projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze-stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically-relevant stimuli without compromising reflexive behavior.SIGNIFICANCE STATEMENTInterneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically-defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior

    Toward a Harmonization for Using in situ Nutrient Sensors in the Marine Environment

    Get PDF
    Improvedcomparabilityofnutrientconcentrationsinseawaterisrequiredtoenhancethe quality and utility of measurements reported to global databases. SigniïŹcant progress has been made over recent decades in improving the analysis and data quality for traditional laboratory measurements of nutrients. Similar efforts are required to establish high-quality data outputs from in situ nutrient sensors, which are rapidly becoming integral components of ocean observing systems. This paper suggests using the good practices routine established for laboratory reference methods to propose a harmonized setofdeploymentprotocolsandofqualitycontrolproceduresfornutrientmeasurements obtained from in situ sensors. These procedures are intended to establish a framework to standardize the technical and analytical controls carried out on the three main types of in situ nutrient sensors currently available (wet chemical analyzers, ultraviolet optical sensors, electrochemical sensors) for their deployments on all kinds of platform. The routine reference controls that can be applied to the sensors are listed for each step of sensor use: initial qualiïŹcation under controlled conditions in the laboratory, preparation of the sensor before deployment, ïŹeld deployment and ïŹnally the sensor recovery. The fundamental principles applied to the laboratory reference method are then reviewed in termsofthecalibrationprotocol,instrumentalinterferences,environmentalinterferences, external controls, and method performance assessment. Data corrections (linearity, sensitivity, drifts, interferences and outliers) are ïŹnally identiïŹed along with the concepts and calculations for qualiïŹcation for both real time and time delayed data. This paper emphasizes the necessity of future collaborations between research groups, referenceaccredited laboratories, and technology developers, to maintain comparability of the concentrationsreportedforthevariousnutrientparametersmeasuredbyinsitusensors

    Evaluation of chemical strategies for improving the stability and oral toxicity of insecticidal peptides

    Full text link
    © 2018 by the authors. Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide !-HXTX-Hv1a (Hv1a). Selective chemical replacement of disulfide bridges with diselenide bonds and N- to C-terminal cyclization were anticipated to improve Hv1a resistance to proteolytic digestion, and thereby its activity when delivered orally. We found that native Hv1a is orally active in blowflies, but 91-fold less potent than when administered by injection. Introduction of a single diselenide bond had no effect on the susceptibility to scrambling or the oral activity of Hv1a. N- to C-terminal cyclization of the peptide backbone did not significantly improve the potency of Hv1a when injected into blowflies and it led to a significant decrease in oral activity. We show that this is likely due to a dramatically reduced rate of translocation of cyclic Hv1a across the insect midgut, highlighting the importance of testing bioavailability in addition to toxin stability

    A Predator from East Africa that Chooses Malaria Vectors as Preferred Prey

    Get PDF
    BACKGROUND: All vectors of human malaria, a disease responsible for more than one million deaths per year, are female mosquitoes from the genus Anopheles. Evarcha culicivora is an East African jumping spider (Salticidae) that feeds indirectly on vertebrate blood by selecting blood-carrying female mosquitoes as preferred prey. METHODOLOGY/PRINCIPAL FINDINGS: By testing with motionless lures made from mounting dead insects in lifelike posture on cork discs, we show that E. culicivora selects Anopheles mosquitoes in preference to other mosquitoes and that this predator can identify Anopheles by static appearance alone. Tests using active (grooming) virtual mosquitoes rendered in 3-D animation show that Anopheles' characteristic resting posture is an important prey-choice cue for E. culicivora. Expression of the spider's preference for Anopheles varies with the spider's size, varies with its prior feeding condition and is independent of the spider gaining a blood meal. CONCLUSIONS/SIGNIFICANCE: This is the first experimental study to show that a predator of any type actively chooses Anopheles as preferred prey, suggesting that specialized predators having a role in the biological control of disease vectors is a realistic possibility

    Two-dimensional NMR lineshape analysis

    Get PDF
    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions
    • 

    corecore