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Abstract 15 

Within reflex circuits, specific anatomical projections allow central neurons to relay 16 
sensations to effectors that generate movements. A major challenge is to relate 17 
anatomical features of central neural populations — such as asymmetric connectivity 18 
— to the computations the populations perform. To address this problem, we mapped 19 
the anatomy, modeled the function, and discovered a new behavioral role for a 20 
genetically-defined population of central vestibular neurons in rhombomeres 5-7 of 21 
larval zebrafish. First, we found that neurons within this central population project 22 
preferentially to motoneurons that move the eyes downward. Concordantly, when the 23 
entire population of asymmetrically-projecting neurons was stimulated collectively, 24 
only downward eye rotations were observed, demonstrating a functional correlate of 25 
the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes 26 
following either nose-up or nose-down body tilts. This asymmetrically-projecting central 27 
population thus participates in both up and downward gaze stabilization. In addition to 28 
projecting to motoneurons, central vestibular neurons also receive direct sensory input 29 
from peripheral afferents. To infer whether asymmetric projections can facilitate sensory 30 
encoding or motor output, we modeled differentially-projecting sets of central vestibular 31 
neurons. Whereas motor command strength was independent of projection allocation, 32 
asymmetric projections enabled more accurate representation of nose-up stimuli. 33 
The model shows how asymmetric connectivity could enhance the representation of 34 
imbalance during nose-up postures while preserving gaze-stabilization performance. 35 
Finally, we found that central vestibular neurons were necessary for a vital behavior 36 
requiring maintenance of a nose-up posture: swim bladder inflation. These observations 37 
suggest that asymmetric connectivity in the vestibular system facilitates representation 38 
of ethologically-relevant stimuli without compromising reflexive behavior. 39 

 40 

Significance Statement 41 

Interneuron populations use specific anatomical projections to transform sensations 42 
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into reflexive actions. Here we examined how the anatomical composition of a 43 
genetically-defined population of balance interneurons in the larval zebrafish relates to 44 
the computations it performs. First, we found that the population of interneurons that 45 
stabilize gaze preferentially project to motoneurons that move the eyes downward. 46 
Next, we discovered through modeling that such projection patterns can enhance the 47 
encoding of nose-up sensations without compromising gaze stabilization. Finally we 48 
found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that 49 
relies on maintaining a nose-up posture. These observations suggest that anatomical 50 
specialization permits neural circuits to represent relevant features of the environment 51 
without compromising behavior. 52 

 53 

Introduction 54 

Neural circuits utilize populations of interneurons to relay sensation to downstream 55 
effectors that in turn generate behavior. The anatomical composition of interneuron 56 
populations has provided insight into its function. For example, interneuron populations 57 
are often organized into maps composed of non-uniformly sized sets of neurons 58 
similarly sensitive to particular features (Kaas, 1997). Such visual topography in the 59 
thalamus (Connolly and Essen, 1984) and cortex (Daniel and Whitteridge, 1961) 60 
magnifies the input from the central visual field. This magnification is thought to underlie 61 
enhanced perceptual acuity (Duncan and Boynton, 2003). Preferential anatomical 62 
organization is thought to facilitate adaptive olfactory (Hansson and Stensmyr, 63 
2011), visual (Barlow, 1981; Xu et al., 2006), somatosensory (Adrian, 1941; Catania 64 
and Remple, 2002), and auditory (Bendor and Wang, 2006; Knudsen et al., 1987) 65 
computations. However, little is known about how these anatomical asymmetries 66 
within populations of sensory interneurons determine the activity of their target motor 67 
effectors. Motor anatomy shares a similar uneven organization (Kuypers, 2011), but 68 
the complex spatiotemporal encoding of muscle synergies have made comparable 69 
dissection of motor circuits more challenging (Harrison and Murphy, 2014; Levine 70 
et al., 2012; Shenoy et al., 2013). Even where descending cortical (Lemon, 2008) 71 
or brainstem (Esposito et al., 2014) neurons synapse directly on motoneurons, the 72 
complexity of most behaviors make it difficult to relate anatomy to function. Data relating 73 
the anatomical projections of interneuron populations to their function is needed to 74 
address this problem. 75 

By virtue of their defined connectivity, interneurons within central reflex circuits offer 76 
the opportunity to explore the relationship between population-level anatomical 77 
properties and function in a simpler framework. Vestibular interneurons, an ancient and 78 
highly conserved population, transform body/head destabilization into commands for 79 
compensatory behaviors such as posture and gaze stabilization (Straka and Baker, 80 
2013; Straka et al., 2014; Szentágothai, 1964). Gaze-stabilizing vestibular brainstem 81 
neurons receive innervation from peripheral balance afferents (Uchino et al., 2001) and 82 
use highly stereotyped axonal projections to particular extraocular motoneuron targets 83 
that produce directionally-specific eye movements (Iwamoto et al., 1990b; McCrea et 84 
al., 1987; Uchino et al., 1982). One anatomical and physiological characterization of 85 
up/down-sensitive vestibular neurons in the cat suggested a potential 3:1 bias towards 86 
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neurons responsible for downward eye movements (Iwamoto et al., 1990a) However, 87 
extracellular recording experiments may be subject to selection bias. Further, as 88 
selective activation has been impossible, whether there are functional correlates of 89 
putative anatomical specialization remains unknown. 90 

To study the relationship between the anatomical specializations of interneuron 91 
populations and their functions, we investigated a genetically-defined population 92 
of vestibular brainstem neurons in a model vertebrate, the larval zebrafish. Larval 93 
zebrafish face well-defined challenges that necessitate control of body orientation in 94 
the vertical/pitch axis (i.e. nose-up/nose-down). First, larval zebrafish rely on vestibular 95 
sensation to guide upward swimming to the water’s surface to gulp air and inflate their 96 
swim bladders, a vital organ necessary to maintain buoyancy (Goolish and Okutake, 97 
1999; Riley and Moorman, 2000). Further, fish actively maintain a nose-up posture 98 
(Ehrlich and Schoppik, 2017), permitting them to efficiently maintain their position in 99 
the water column despite being slightly denser than their surroundings (Aleyev, 1977; 100 
Stewart and McHenry, 2010). Larval zebrafish utilize vestibular brainstem neurons to 101 
stabilize gaze by performing torsional and vertical eye movements (Bianco et al., 2012). 102 
These same neurons project to nuclei responsible for movement initiation and pitch 103 
tilts (Pavlova and Deliagina, 2002; Severi et al., 2014; Thiele et al., 2014; Wang and 104 
McLean, 2014). 105 

We leveraged known properties of the gaze-stabilization circuit to relate the anatomy of 106 
a genetically-defined population of vestibular brainstem neurons and their function. Our 107 
study reports three major findings. First, we discovered that central vestibular neurons in 108 
rhombomeres 5-7 (r5-r7) project preferentially to extraocular motoneurons that move the 109 
eyes down. Ablation of these neurons eliminates counter-rotation of the eyes following 110 
body tilts, establishing a role in gaze-stabilization. Second, modeling revealed that 111 
asymmetrically projecting neurons could enhance the capacity to represent nose-up 112 
stimuli without compromising gaze-stabilization. Third, we discovered that fish do not 113 
inflate their swim bladders following ablation of these interneurons. Taken together, 114 
our data suggest that the anatomical specialization we observe permits sensory 115 
specialization while maintaining reflexive capabilities. 116 

 117 

Methods 118 

Fish Care 119 

All protocols and procedures involving zebrafish were approved by the Harvard 120 
University Faculty of Arts & Sciences Standing Committee on the Use of Animals in 121 
Research and Teaching (IACUC). All larvae were raised at 28.5° C, on a standard 14/10 122 
hour light/dark cycle at a density of no more than 20-50 fish in 25-40mL of buffered 123 
E3 (1mM HEPES added). When possible, experiments were done on the mitfa-/- 124 
background to remove pigment; alternatively, 0.003% phenylthiourea was added to 125 
the medium from 24hpf onwards and changed daily. Larvae were used from 2 days 126 
post-fertilization (dpf) to 11 dpf. During this time, zebrafish larvae have not determined 127 
their sex. 128 

Behavior 129 
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Torsional eye movements were measured following step tilts delivered using an 130 
apparatus similar in design to (Bianco et al., 2012). All experiments took place in the 131 
dark. Larval fish were immobilized completely in 2% low-melting temperature agar 132 
(Thermo Fisher 16520), and the left eye was freed. The agar was then pinned (0.1mm 133 
stainless minutien pins, FST) to a 5mm2 piece of Sylgard 184 (Dow Corning) which 134 
was itself pinned to Sylgard 184 at the bottom of a 10mm2 optical glass cuvette (Azzota, 135 
via Amazon). The cuvette was filled with 1mL of E3 and placed in a custom holder on a 136 
5-axis (X,Y,Z,pitch,roll) manipulator (ThorLabs MT3 and GN2). The fish was aligned with 137 
the optical axes of two orthogonally placed cameras such that both the left utricle and 138 
two eyes were level with the horizon (front camera). 139 

The eye-monitoring camera (Guppy Pro 2 F-031, Allied Vision Technologies) used a 140 
5x objective (Olympus MPLN, 0.1 NA) and custom image-forming optics to create a 141 
100x100 pixel image of the left eye of the fish (6 μm/pixel), acquired at 200Hz. The 142 
image was processed on-line by custom pattern matching software to derive an estimate 143 
of torsional angle (LabView, National Instruments), and data were analyzed using 144 
custom MATLAB scripts (Mathworks, Natick MA). A stepper motor (Oriental Motors 145 
AR98MA-N5-3) was used to rotate the platform holding the cameras and fish. The 146 
platform velocity and acceleration was measured using integrated circuits (IDG500, 147 
Invensense and ADXL335, Analog Devices) mounted together on a breakout board 148 
(Sparkfun SEN-09268). Fish were rotated stepwise for 10 cycles: from 0° to -60°, 149 
where positive values are nose-down, then from -60° to 60°, and then back to 0° in 10° 150 
increments, with a peak velocity of 35°/sec. The inter-step interval was 5 seconds, and 151 
the direction of rotation was then reversed for the next sequence of steps. 152 

The eye’s response across the experiment was first centered to remove any offset 153 
introduced by the pattern-matching algorithm. Data were then interpolated with a cubic 154 
spline interpolation to correct for occasional transient slowdowns (i.e. missed frames) 155 
introduced by the pattern-matching algorithm. The eye’s velocity was estimated by 156 
differentiating the position trace; high-frequency noise was minimized using a 4-pole 157 
low-pass Butterworth filter (cutoff = 3Hz). Each step response was evaluated manually; 158 
trials with rapid deviations in eye position indicative of horizontal saccades or gross 159 
failure of the pattern-matching algorithm were excluded from analysis. The response 160 
to each step for a given fish was defined as the mean across all responses to that step 161 
across cycles. The gain was estimated by measuring the peak eye velocity occurring 162 
over the period 375-1000 ms after the start of the step. The steady-state response was 163 
estimated by measuring the mean eye position over the final 2 sec of the step; the range 164 
was the difference between the most eccentric nose-up and nose-down steady-state 165 
angles. 166 

Gain was evaluated over the range from +30° to -30°, i.e. the first three steps away 167 
from the horizontal meridian. We chose this interval for three reasons: 1) Fish spend 168 
the overwhelming majority of their time with a body orientation in this range (Ehrlich and 169 
Schoppik, 2017) 2) The responses here were the strongest, allowing us confidence in 170 
the dynamic capacity of the system without encountering the biophysical limits imposed 171 
by orbital structure 3) Because the utricle conveys information both about static and 172 
dynamic changes in orientation, the eyes adopt an increasingly eccentric rotation as the 173 
stimulus progresses, potentially constraining dynamic range. 174 
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 175 
Transgenic Lines 176 

Tg(-6.7FRhcrtR:gal4VP16):-6.7FRhcrtR was amplified the using a nested PCR 177 
strategy. First, a 6775bp DNA fragment immediately upstream of the Fugu rubripes 178 
hcrtr2 start site was amplified from genomic DNA, using a high-fidelity polymerase 179 
(PfuUltra II Fusion, Stratagene) with primers 5’-AATCCAAATTCCCAGTGACG-3’ and 180 
5’-CCAGATACTCGGCAAACAAA-3’ , 56° C annealing temperature, 1:45 elongation 181 
time. The PCR product was TOPO cloned into a TA vector (Thermo Fisher). Using 182 
the resulting plasmid as a template, a 6732bp fragment was amplified using primers 183 
5’-AATCCAAATTCCCAGTGACG-3’ and 5’-CCAGATACTCGGCAAACAAA-3’ 184 
55° C annealing temperature, 1:45 elongation and similarly TOPO cloned into a 185 
GATEWAY-compatible vector (PCR8/GW, Thermo Fisher). The resulting entry 186 
vector was recombined into a destination vector upstream of gal4-VP16, between 187 
Tol2 integration arms (Urasaki et al., 2006). Tg(UAS-E1b:Kaede)s1999t embryos 188 
were injected at the one-cell stage with 0.5nL of 50ng/uL plasmid and 35ng/uL Tol2 189 
transposase mRNA in water, and their progeny screened for fluorescence. One founder 190 
produced three fluorescent progeny; one survived. To identify transgenic fish without 191 
using a UAS reporter, potential carriers were genotyped using the following primers to 192 
generate a 592bp product spanning the upstream Tol2 arm and the start of the Fugu 193 
sequence: 5’-CAATCCTGCAGTGCTGAAAA-3’ and 5’-TGATTCATCGTGGCACAAAT-3’ 194 
57° C annealing temperature, 0:30 elongation time. The complete expression pattern 195 
has been described elsewhere (Lacoste et al., 2015) and is part of the Z-brain atlas 196 
(Randlett et al., 2015) 197 

Tg(14xUAS-E1b:hChR2(H134R)-EYFP):hChR2(H134R)-EYFP (Zhang et al., 2007) was 198 
subcloned downstream of 14 copies of a UAS element and an E1b minimal promoter 199 
in a vector containing an SV40 polyA sequence and Tol2 recognition arms (Urasaki 200 
et al., 2006). This vector was co-injected with tol2 transposase mRNA into TLAB 201 
embryos at the single cell stage. Potential founders were screened by crossing to 202 
Tg(isl1:Gal4-VP16,14xUAS:Kaede)(Pan et al., 2011) and monitoring tail movements in 203 
response to blue light from an arc lamp on a stereomicroscope (Leica MZ16) at 30hpf. 204 

The following transgenic lines were used: Tg(UAS-E1b:Kaede)s1999t (Scott et al., 205 
2007), Tg(isl1:GFP) (Higashijima et al., 2000), Tg(UAS:KillerRed) (Bene et al., 2010), 206 
Tg(UAS-E1b:Eco.NfsB-mCherry) (Pisharath et al., 2007), atoh7th241/th241 (Kay et al., 207 
2001); Tg(atoh7:gap43-RFP) (Zolessi et al., 2006), Tg(5xUAS:sypb-GCaMP3) (Nikolaou 208 
et al., 2012) and Et(E1b:Gal4-VP16)s1101t (Scott et al., 2007). 209 

 210 
Anatomy 211 

To generate mosaically-labeled fish, 0.5nL of 30ng/μL plasmid DNA 212 
(14xUAS-E1b:hChR2(H134R)-EYFP (Douglass et al., 2008) or UAS-Zebrabow (Pan et 213 
al., 2013)) was injected in water at the one-cell stage into Tg(-6.7FRhcrtR:gal4VP16); 214 
Tg(isl1:GFP) fish. Embryos were screened at 24-48hpf. The majority (80%) of injected 215 
fish were excluded due to deformities or developmental arrest. The remaining fish were 216 
screened at 72hpf under a fluorescent stereoscope (Leica MZ16) with a high-pass 217 
GFP emission filter for YFP fluorescence or a Cy3 emission filter for dTomato. As 218 
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Tg(-6.7FRhcrtR:gal4VP16) will label the skin and notochord early (36-48hpf) and 219 
fluorescence in either structure is relatively easy to visualize, embryos with mosaic 220 
labeling (usually 1-10 cells) in these structures were selected. On average, 1-2% of 221 
injected embryos were retained for high-resolution screening. Larvae were anesthetized 222 
(0.016% w/v tricaine methane sulfonate, Sigma A5040) mounted dorsally at 5-7dpf and 223 
imaged on a confocal microscope (Zeiss 510, 710, or 780, using either a 20x 1.0N.A., a 224 
40x 1.1 N.A. or a 63x 1.0 N.A. objective with Zen 2010, 8-bit acquisition) with excitation 225 
of 488nm (GFP) and 514nm (EYFP), and emission for the two channels was either 226 
separated at 550nm by a glass dichroic filters or a tunable filter. The two channels could 227 
reliably be separated provided the level of EYFP was strong relative to GFP. 228 

Most of the fish selected for confocal imaging had some neurons labeled in the 229 
brain, but on average, only 0.5%-2% (i.e. 5-20 for every 1000) of injected embryos 230 
would have vestibular nucleus neurons that were both bright and sufficiently isolated 231 
enough to trace. Neurons were only included in the study if their axon could be traced 232 
unambiguously throughout its entirety to a distinct cell body; qualitatively, the asymmetry 233 
persisted among excluded fish. Neurons were traced manually with the assistance 234 
of the ImageJ plugin Simple Neurite Tracer (Longair et al., 2011). Cell bodies of the 235 
oculomotor and trochlear nuclei were localized manually using the Fiji/ImageJ ROI 236 
functionality (Schindelin et al., 2012). Superior oblique motoneurons were found in nIV 237 
and superior rectus motoneurons were the most ventral somata in nIII (Greaney et al., 238 
2016). All images were adjusted linearly, using the Brightness & Contrast functionality 239 
in Fiji/ImageJ (Schindelin et al., 2012). For display purposes, a non-linear histogram 240 
adjustment (gamma = 0.5) was applied to the maximum intensity projection in Figure 241 
1b and 2a to increase the relative brightness of thin axonal arbors, and, for Figure 2a, to 242 
make clear the sparse nature of the label. 243 

Retrograde labeling of the ocular motor nuclei was done as previously described 244 
(Greaney et al., 2016; Ma et al., 2010). In brief, crystals of fluorescently-conjugated 245 
dextrans (10,000 MW, Thermo Fisher D-1824 or D-22914) were placed in the left orbit 246 
of anesthetized 5-7dpf fish. In fish, the superior eye muscles receive projections from 247 
the contralateral motor nuclei, making the relevant neurons in nIV (superior oblique) 248 
and nIII (superior rectus) easy to discriminate, as they were exclusively labeled on the 249 
contralateral (right) side. 250 

Focal electroporations were done as detailed previously (Bianco et al., 2012; Tawk 251 
et al., 2009). Briefly, anesthetized larvae (2 dpf) were immobilized in low-melting 252 
temperature agarose. Micropipettes (tip diameter of 1-2 mm) were filled with a solution 253 
containing 1 mg/ml gap43-EGFP plasmid DNA in distilled water. To target the vestibular 254 
nucleus neurons, the pipette was placed at the lateral limit of rhombomere 5, using 255 
the decussation of the Mauthner axon midline crossing as a landmark. A Grass SD9 256 
stimulator (Grass Technologies) was used to deliver three trains of voltage pulses 257 
in succession, with 1 s interval between trains. Each train was delivered at 200Hz 258 
for 250ms, 2ms on time, with an amplitude of 30V. Larvae were imaged at 5dpf on a 259 
custom multi-photon microscope at 790 nm. 260 

 261 
Lesions 262 
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Single-cell ablations were performed using a pulsed infrared laser (SpectraPhysics 263 
MaiTai HP) at 820nm (80MHz repetition rate, 80 fs pulse duration) at full power: 264 
200mW (2.5nJ) measured at the specimen with a power meter (ThorLabs S130C). Fish 265 
were mounted dorsally in 2% low-melt agarose in E3 under a 20x 0.95 NA objective 266 
(Olympus) and anesthetized as described above. Cell bodies were targeted for ablation 267 
based on anatomical location, starting with the most ventro-lateral neurons in the 268 
tangential nucleus and then moving dorso-medially through the tangential and medial 269 
vestibular nucleus. Each cell was exposed to the pulsed infrared laser light for a brief 270 
period of time (35-50ms) while the resulting fluorescent emissions were measured; 271 
usually, there was a brief pulse of light that saturated the detection optics which was 272 
used to shutter the laser. 5-10 neurons/plane were targeted bilaterally, resulting in 273 
either loss of fluorescence (Tg(UAS-E1b:Kaede)s1999t and Tg(isl1:GFP)) or increased 274 
diffuse fluorescence at the cell body (Tg(UAS-ChR2-E134R-EYFP)). Fish were imaged 275 
immediately and 24 hours after ablation to confirm the extent of the lesion. 15% of 276 
lesioned fish were excluded because they did not survive a full 24hrs after the lesion. 277 
Fish were observed under a stereomicroscope in a petri dish post-lesion to ensure 278 
the presence of spontaneous horizontal saccades and normal jaw movements; all 279 
lesioned fish showed both. Fish for lesions were 4-5 dpf, as preliminary experiments 280 
showed that plasma formation was more effective in younger fish, and were selected 281 
to be the brightest in the clutch (likely doubly homozygous for UAS-E1b:Kaede and 282 
6.7FRhcrtR:gal4VP16). 283 

As previously described (Bianco et al., 2012), the eye movements in younger fish are 284 
of lower gain, and 3/17 fish were excluded from analysis because their total range 285 
was < 10°. Behavior was always measured at least 4 hours and no more than 8 hours 286 
after lesions. The decrease in gain was reported as a percentage of pre-lesion gain, 287 
defined as the difference between the median pre-lesion gain and median post-lesion 288 
gain normalized by the median pre-lesion gain. To activate KillerRed, green light (Zeiss 289 
set 43, 545nm/25) from an arc lamp was focused through a 63x 1.0 NA objective 290 
stopped down to fill a 200 μm diameter region for 15 minutes. Fish were mounted 291 
dorsally and anesthetized as described above. The focal plane was at the level of the 292 
decussation of the Mauthner axons, measured under brightfield illumination. Due to 293 
equipment replacement the precise power of the arc lamp could not be measured, but 294 
20 minutes of exposure under identical conditions was fatal to the fish. Post-lesion 295 
behavior was measured at least 4 hours after the light exposure. To induce apoptosis 296 
with nitroreductase, fish were placed in E3 with 7.5mM of metrodinazole (Sigma M1547) 297 
in 0.2% v/v DMSO and behavior was measured 24hrs later (Curado et al., 2007). The 298 
presence of mCherry fluorescence was assayed after behavior to determine genotype. 299 

Optical Activation and Analysis 300 

Channelrhodopsin-induced eye movements were monitored using the same apparatus 301 
used for measuring tilt-induced behavior, with the addition of a fiber-coupled laser on an 302 
independent micromanipulator (Arrenberg et al., 2009; Schoonheim et al., 2010). Fish 303 
were immobilized and mounted as before, and agar was removed above the head as 304 
well as the left eye. Stimulus was generated by a 100mW 473nm diode laser (Shanghai 305 
DreamLasers SDL-473-100MFL) coupled by the manufacturer to a 50 μm inner diameter 306 
0.22 NA multimode fiber (ThorLabs AFS50/125Y) that itself was butt-coupled to a 10mm 307 
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cannula made from the same diameter fiber (ThorLabs AFS50/125YCANNULA). Power 308 
at the cannula tip was 30-60mW, measured with a power meter (ThorLabs S130C). 309 
The fiber tip was placed above the ear, evenly-centered between the eyes, and 1mm 310 
above the skin of the fish. Stimuli ranged in duration from 1 μsec to 100 msec, and were 311 
presented every 5 seconds. Eye movements were tracked and processed as before, 312 
including manual analysis; only fish with at least 25 analyzable responses to a given 313 
stimulus were included in the analysis. The response to a given stimulus was quantified 314 
by taking the peak angular rotation reached over the first 2 sec. 315 

By microinjecting plasmid DNA at the single-cell stage, we generated embryos as above 316 
with somatic expression of ChR2-EYFP in random subsets of vestibular neurons, on 317 
a blind background, atoh7th241/atoh7th241 (Kay et al., 2001). As with anatomical 318 
experiments, between 5-20 fish for each 1000 injected had acceptable expression. Of 319 
these, only 1/4 were homozygous for atoh7th241, and only 1/4 of those expressed the 320 
allele necessary to confirm blindness by visualizing the absence of retinal ganglion cell 321 
axons Tg(atoh7:gap43-RFP). The large number of alleles required and the low success 322 
rate limited the number of fish available to test. Tracing individual axonal projections 323 
to quantify the absolute number of VNs labeled in a given fish was not possible except 324 
in the most sparsely labeled fish. Further, as expected with somatic expression, 325 
ChR2-EYFP levels varied considerably across vestibular neurons. To measure the 326 
relationship between expression levels/number of labeled neurons and the magnitude 327 
of the evoked eye movement, we quantified EYFP fluorescence. Vestibular neurons are 328 
the only neurons with rostral MLF projections labeled in Tg(-6.7FRhcrtR:gal4VP16). As 329 
such, the total intensity of the MLF projection for a given fish was measured from the 330 
rostral-most point behind nIV, stopping caudally where the projection narrows to the 331 
midline (rhombomere 4). A single image that summed the intensity of all slices in the 332 
confocal stack that contained the MLF projection was used for our measurements. To 333 
correct for differences in acquisition parameters, MLF fluorescence was normalized 334 
by a measure of acquisition noise. Noise was estimated by measuring the summed 335 
fluorescence of a region between the branches of the MLF, which did not contain any 336 
neuropil. A value of one indicates no MLF fluorescence differentiable from background 337 
noise, two indicates MLF fluorescence twice that of the background, etc.. Ocular 338 
responses to blue light were evaluated and reported as above. Responses were 339 
evaluated for significance by comparing the median activity 200 ms after the stimulus 340 
to the baseline (200 ms before the stimulus). 341 

Model 342 

Our model estimated the collective activity of 80 post-synaptic neurons generated 343 
by integrating activity from a set of pre-synaptic neurons. We evaluated two free 344 
parameters: the number of pre-synaptic neurons in the set (30, 42, 70, 105, 140, 168, 345 
180) and the number of inputs on to a given post-synaptic neuron (2-30). Pre-synaptic 346 
activity was generated by translating a rate function, derived from the velocity profile 347 
of the steps used in the behavioral experiment, into a Poisson train of activity. Step 348 
velocity was scaled to match the reported velocity sensitivity (2 spikes/°/sec) of 349 
second-order vestibular neurons (Iwamoto et al., 1990a) to generate a rate function for 350 
Poisson spikes. The velocity reached a peak of 35 °/sec and lasted 1sec; the model was 351 
run at 1kHz. Poisson trains were subjected to an imposed 2msec refractory period. The 352 
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spikes were then convolved with a decaying exponential with τ = 1.5sec to represent 353 
an excitatory post-synaptic potential. A random subset of pre-synaptic neurons were 354 
selected from the set and summed together to create an input to a post-synaptic 355 
neuron. Post-synaptic activity was determined by thresholding the input, subject to a 356 
2msec refractory period. The threshold for the post-synaptic neuron was defined as 357 
the minimum of an input of 1.8 or 95% of the cumulative distribution of pre-synaptic 358 
input strength. One input spike had a value of 1; after convolution, a threshold of 1.8 359 
was reached if at least four spikes were present across all inputs over a 4ms period. 360 
Changing the threshold ensured that the post-synaptic response would not saturate as 361 
the number of inputs increased; the specific threshold did not change the relationships 362 
we observed and is expected from the basic properties of extraocular motoneurons 363 
(Torres-Torrelo et al., 2012). We generated 80 distinct spike trains, reflecting the 364 
number of motoneurons in a given motoneuron pool (Greaney et al., 2016). The total 365 
post-synaptic response was defined as the average activity, evaluated where the rate 366 
function was positive. The strength of the relationship between the pre-synaptic rate 367 
function and the summed post-synaptic response was defined as the coefficient of 368 
determination. 369 

 370 
Experimental Design and Statistical Analysis 371 

As data were not normally distributed, expected values are reported as the median, 372 
variability as the median absolute deviation (MAD), and non-parametric tests of 373 
significance were used. Potential differences between groups (e.g. up tilts vs. down) 374 
were evaluated using the Wilcoxon rank sum test, and the Wilcoxon signed rank test 375 
was used to test whether a distribution had a median different from zero (e.g. change in 376 
performance post-lesion). Significance was determined at p < 0.05. 377 

Results 378 

A genetically-defined population of brainstem neurons projects 379 
preferentially to extraocular motoneurons that move the eyes 380 
downward 381 

We adopted a molecular approach to characterize a subset of vestibular 382 
brainstem neurons in the larval zebrafish. We used a transgenic line of zebrafish, 383 
Tg(-6.7FRhcrtR:gal4VP16) that drives expression of a transcription factor (Gal4) in a 384 
restricted subset of neurons, including those in r5-r7 (Lacoste et al., 2015; Randlett et 385 
al., 2015). When crossed with other transgenic lines that contain an upstream activating 386 
sequence (UAS), Gal4 induces selective expression of particular genes useful for 387 
visualization, and for chemical or light-mediated manipulation. We first crossed the 388 
Tg(-6.7FRhcrtR:gal4VP16) to the Tg(UAS-E1b:Kaede)s1999t line to selectively drive a 389 
red fluorescent protein. In addition, we performed these experiments on a transgenic 390 
background, Tg(isl1:GFP), that constitutively labeled cranial motoneurons, including 391 
extraocular motoneurons, with a green fluorescent protein. 392 

Within r5-r7 (delineated by the rostro-caudal extent of the facial nucleus, Figure 1B), 393 we observed expression in 200 neurons that, in aggregate, comprise a subset of 394 
two bilateral vestibular nuclei. The first was the previously characterized utricle signal 395 
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recipient tangential nucleus (Bianco et al., 2012), located adjacent to the ear. The 396 
second was the medial vestibular nucleus (Highstein and Holstein, 2006) separated 397 
from the tangential nucleus by the lateral longitudinal fasciculus. Figure 1A-1C show the 398 
gross morphology of these neurons and their axonal projections to the extraocular motor 399 
nuclei. In aggregate, we observed that the axon bundle from these vestibular neurons 400 
crosses the midline, ascends rostrally along the medial longitudinal fasciculus (MLF), 401 
and projects to extraocular motor nuclei nIII and nIV (Figure 1D-1F). 402 

The utricular vestibulo-ocular reflex utilizes two independent “channels,” or defined 403 
neural pathways from peripheral sensation to motor output, to stabilize gaze following 404 
pitch and roll tilts. At the level of the extraocular motoneurons, in the larval zebrafish 405 
the two channels are segregated along the dorso-ventral axis. First, the ventral-most 406 
extraocular motoneurons in nIII project to the inferior oblique (IO) and superior rectus 407 
(SR) motoneurons. Together, IO/SR move the eyes up following nose-down pitch tilts. 408 
Second, the dorsal-most extraocular motoneurons in nIII project to the inferior rectus 409 
(IR), and the dorsally-located nucleus nIV projects exclusively to the superior oblique 410 
(SO). Together, IR/SO move the eyes down following nose-up pitch tilts. The somatic 411 
organization of nIII and nIV is stable after 5 days post-fertilization (Greaney et al., 2016). 412 
Finally, previous electromyographic recordings demonstrates that the SR (nIII) and SO 413 
(nIV) muscles are exclusively active during either the nose-down or nose-up phase of 414 
pitch-tilts supporting the independence of the two channels (Favilla et al., 1983). 415 

Complementarily, pitch-sensitive vestibular nucleus neurons split into two subtypes, 416 
each projecting to only one pair of extraocular motoneurons (Uchino et al., 1982). The 417 
first group arborizes exclusively in nIII, innervating IO/SR. The second arborizes in both 418 
nIII and nIV, innervating SO/IR. Since nIV is comprised only of extraocular motoneurons 419 
that innervate SO, a collateral projection to nIV differentiates vestibular interneurons that 420 
respond to nose-up pitch tilts from those that respond to nose-down. 421 
To determine if vestibular neurons labeled in Tg(-6.7FRhcrtR:gal4VP16) comprise 422 
both nose-up and nose-down subtypes, we examined their collective projections. We 423 
observed that their projection terminated near the ventral-most extraocular motoneurons 424 
in nIII (wide view in Figure 1G, close up Figure 1H-1I). The second prominent projection 425 
from vestibular neurons goes to extraocular motoneurons in nIV (wide view in Figure 426 
1J, close-up Figure 1K-1L). We conclude that the vestibular neurons labeled in r5-r7 in 427 
Tg(-6.7FRhcrtR:gal4VP16) are poised to respond during both nose-up and nose-down 428 
pitch tilts. 429 
To test whether the vestibular neurons labeled in Tg(-6.7FRhcrtR:gal4VP16) projected 430 
symmetrically to extraocular motoneurons, we examined the axon collaterals of 431 
singly-labeled neurons. To differentiate nose-up from nose-down vestibular neurons, 432 
we manually traced the axons of vestibular neurons and used the labeled cranial 433 
motor nuclei to categorize their projections, based on the presence/absence of a 434 
collateral projection to nIV. We labeled stochastic subsets of vestibular neurons 435 
by injecting a plasmid encoding a fluorescent protein into one-cell embryos, 436 
Tg(-6.7FRhcrtR:gal4VP16). Experiments were performed on the Tg(isl1:GFP) 437 
background to co-label extraocular motoneurons. The majority of labeled neurons 438 
(25/27) had only an ascending collateral; the remaining two had a bifurcated axon 439 
that both ascended and descended along the MLF. We found that the overwhelming 440 
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majority (23/27) of labeled vestibular neuron axons had a dorsal collateral projecting 441 
to nIV (i.e. nose-up/eyes-down vestibular neurons). One example neuron from the 442 
majority population is shown projecting to nIV in Figure 2A-2D and reconstructed as a 443 
schematic in Movie M1. In contrast, one example neuron from the minority population, 444 
projecting exclusively to nIII with a collateral to the superior rectus motoneurons, is 445 
shown in Figure 2E-2G, and reconstructed in Movie M2. Somata of neurons projecting 446 
exclusively to nIII were intermingled with those with projections to nIV. By examining 447 
labeled neurons at two time points (5 and 11 days post-fertilization) we found that the 448 
characteristic collateral projection to nIV in traced vestibular neurons remained unaltered 449 
(Figure 3). 450 
Our genetically-based labeling technique is limited to neurons within the population 451 
labeled in Tg(-6.7FRhcrtR:gal4VP16). To complement our initial characterization with 452 
an unbiased sample of vestibular neurons in r5-r7, we examined the projections of 453 
vestibular neurons that had been electroporated with a membrane-targeted fluorescent 454 
protein in wild-type animals. Of 20 electroporated animals with singly-labeled neurons in 455 
the vestibular nuclei, 15 neurons had an ascending branch along the medial longitudinal 456 
fasciculus. 12 of these (80%) had a prominent projection to nIV. Taken together, our 457 
data support the conclusion that vestibular neurons in the larval zebrafish project 458 
preferentially to extraocular motoneurons that move the eyes down. 459 
To determine whether there was anatomical evidence that the axonal collaterals 460 
contained synapses, we labeled presynaptic puncta in Tg(-6.7FRhcrtR:gal4VP16) 461 
by crossing to Tg(5xUAS:sypb-GCaMP3) to selectively express a fluorescent protein 462 
fused to the presynaptic protein synaptophysin (Nikolaou et al., 2012). We then labeled 463 
the extraocular motoneurons by retro-orbital dye fill. We confirmed the presence of 464 
presynpatic puncta proximal to the soma and dendrites of SO and SR motoneurons 465 
(Figure 4). Recent expansion microscopy work together with anti-synaptotagmin2b 466 
staining confirmed the presence of synaptic puncta between vestibular neurons labeled 467 
in Tg(-6.7FRhcrtR:gal4VP16) and extraocular motoneuron somata and dendrites (L. 468 
Freifeld and E. Boyden, unpublished observations). These results suggest that the axon 469 
collaterals from vestibular neurons labeled in Tg(-6.7FRhcrtR:gal4VP16) likely contain 470 
functional synapses. 471 

 472 
Labeled vestibular neurons are collectively necessary for gaze 473 
stabilization following both nose-up and nose-down body rotations 474 

To determine whether the transgenically-labeled vestibular neurons constitute a 475 
complete set necessary for both upwards and downwards eye movements following 476 
body tilts, we measured gaze stabilization (the vestibulo-ocular reflex) before 477 
and after their removal. We ablated single vestibular neurons individually with a 478 
pulsed infrared laser in Tg(-6.7FRhcrtR:gal4VP16). These fish had been crossed to 479 
Tg(UAS-E1b:Kaede)s1999t to express a fluorescent protein in vestibular neurons. 480 
Further, experiments were performed on the Tg(isl1:GFP) background that labeled 481 
adjacent motoneurons in nVII for control ablations (Figure 5A). Following ablation, 482 
qualitative observation revealed that horizontal eye saccades and spontaneous 483 
jaw movements were present as in normal fish. Ablations eliminated nearly the 484 
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entire response to body tilts (both nose-up and nose-down): the median decrease 485 
in vestibulo-ocular reflex gain was 94.5% ± 3.5% (n = 14, p = 1.2  10−4 Figure 5B). 486 
We saw no difference (p = 0.77) in the post-lesion gain for nose-up (0.0165 ± 0.0135) 487 
and nose-down (0.02 ± 0.0135) body rotations. In contrast, control lesions of somata 488 
in the adjacent facial nucleus (nVII) produced no systematic change in the gain (n 489 
= 5, 38.5% ± 24.5%, p = 0.41) or the range (31% ± 52%, p = 0.44, Figure 5C) of the 490 
vestibulo-ocular reflex. 491 

To confirm the finding that the labeled neurons in Tg(-6.7FRhcrtR:gal4VP16) were 492 
necessary for the normal vestibulo-ocular reflex following pitch tilts, we used two 493 
additional ablation techniques to target neurons labeled in Tg(-6.7FRhcrtR:gal4VP16). 494 
First, by crossing to Tg(UAS-E1b:Eco.NfsB-mCherry) we selectively expressed a 495 
protein, nitroreductase (nfsb) that caused neurons to die on exposure to a prodrug, 496 
metronidazole (Curado et al., 2007; Pisharath et al., 2007). After exposure to 497 
metronidazole, the vestibulo-ocular reflex was significantly impaired in larvae that 498 
expressed nfsb compared to their siblings that did not (n=5, p = 0.008, Figure 5C). Next, 499 
we crossed Tg(-6.7FRhcrtR:gal4VP16) to Tg(UAS-KillerRed) to selectively express 500 
a protein, Killer Red, that causes neurons to die on exposure to green light (Bene et 501 
al., 2010). After exposing the hindbrain to green light, the vestibulo-ocular reflex was 502 
significantly impaired in larvae that expressed Killer Red compared to similarly exposed 503 
siblings (n=5, p = 0.008, Figure 5C). We conclude that vestibular neurons labeled in 504 
Tg(-6.7FRhcrtR:gal4VP16) are necessary for compensatory eye movements following 505 
either nose-up or nose-down body pitch tilts. 506 

Labeled vestibular neurons, collectively activated, rotate the eyes 507 
down 508 

The circuit that enables correct gaze stabilization following pitch and roll body tilts 509 
(Figure 6) permits a specific prediction about the eye movements that might follow 510 
collective activation. Three key features of this circuit enable this prediction: 1. two 511 
distinct channels selectively sensitive to nose-up and nose-down rotations, 2. excitatory 512 
central neurons that all cross the midline, and 3. superior extraocular motoneurons 513 
that cross back. Figure 6C-6D show the torsional response to nose-up and nose-down 514 
body tilts. There, utricular hair cells in both the left and right ear sense the same pitch 515 
tilts. The projection patterns ensure that inputs from a given ear contacts the correct 516 
superior eye muscle on the ipsilateral side, and the correct inferior eye muscle on 517 
the contralateral side. In contrast, when the fish rolls, both nose-up and nose-down 518 
channels ipsilateral to the roll are activated. The two superior muscles are then 519 
activated ipsilaterally, while the two inferior muscles are activated contralaterally. In 520 
this way, a single circuit can respond appropriately to the two cardinal directions of body 521 
rotation sensed by the utricle, the sole source of vestibular sensation in young zebrafish 522 
(Beck et al., 2004; Bianco et al., 2012; Mo et al., 2010; Roberts et al., 2017). 523 

Collectively activating all utricle signal recipient vestibular neurons is therefore 524 
equivalent to the fish rolling both leftward and rightward simultaneously. 525 
Consequentially, all four eye muscles on both sides would be expected to contract 526 
together. If no eye movement were to result, we would conclude that despite the 527 
anatomical asymmetry, the nose-up and nose-down vestibular neuron pools were 528 
functionally equivalent. In contrast, a net downward rotation reflects stronger 529 
activation of the SO/IR motoneurons (nose-up, Figure 6C) and weaker activation of 530 
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the SR/IO motoneurons (nose-down, Figure 6D). A net upward rotation reflects 531 
the opposite. Any vertical component (SO/SR vs IO/IR) to the eye movement would 532 
reflect uneven activation of neurons in the left vs. right hemisphere (Figure 6B), 533 
and would be dissociable from the torsional component. We hypothesized that the 534 
gaze-stabilization circuit predicts that any systematic eye movement observed along the 535 
nose-up/nose-down axis following collective activation of vestibular brainstem neurons 536 
must reflect a functional bias in the set of activated neurons. 537 

To determine whether the asymmetry among the population of neurons we observed 538 
is functional, we measured eye rotations following collective activation of brainstem 539 
neurons labeled in Tg(-6.7FRhcrtR:gal4VP16). We expressed the light-sensitive cation 540 
channel, channelrhodopsin-2 (ChR2) and used a fiber-optic cannula (Arrenberg et al., 541 
2009) to target blue light to labeled vestibular neurons in Tg(-6.7FRhcrtR:gal4VP16); 542 
Tg(UAS:ChR2(H134R)-EYFP) fish. Since blue light evoked eye movements in 543 
wild-type fish (Movie M3), we performed all activation experiments using a blind mutant 544 
lacking retinal ganglion cells: atoh7th241/th241; Tg(atoh7:gap43-RFP) (Kay et al., 2001). 545 
Strikingly, in every transgenic fish tested, the eyes rotated downward in response to 546 
blue light flashes, as if the nose of the fish had moved up. We observed no systematic 547 
vertical component to the eye’s rotation. Across fish (n = 10) the amplitude of eye 548 
rotation (Figure 7a, black line) scaled with the duration of the light flash, with a peak 549 
response of 45°/sec. Crucially, control siblings (n = 3) not expressing ChR2 did not 550 
respond to light flashes (Figure 7A, gray line). Laser-mediated ablation of vestibular 551 
neurons abolished the light-evoked eye rotation (n=10, Figure 7B). Activation of the 552 
population of vestibular neurons is therefore sufficient to rotate the eyes downward, 553 
consistent with the asymmetric distribution of anatomical projections. 554 

We extended our test of sufficiency by activating all of the neurons in the region of the 555 
vestibular nucleus using a line reported (Scott et al., 2007) to drive expression in all 556 
neurons, Et(E1b:Gal4-VP16)s1101t. In all fish tested (n=6), we evoked downward eye 557 
rotations in the torsional plane corresponding to nose-up tilts (Figure 7C, Movie M4, note 558 
the corruptive horizontal component present in one trace). Both genetically restricted 559 
and unbiased activation of vestibular neurons produced net downward eye rotations, 560 
and thus the gaze-stabilizing population of vestibular neurons is functionally asymmetric. 561 

To test whether selective activation of vestibular neurons is sufficient to rotate the eyes, 562 
and to estimate the variability across neurons, we expressed ChR2 stochastically 563 
in subsets of neurons in Tg(-6.7FRhcrtR:gal4VP16) fish on a blind background 564 
(atoh7th241/th241; Tg(atoh7:gap43-RFP). Of 27 sparsely labeled fish, 12 had 565 
expression in vestibular neurons. As expected from the uneven anatomy, all 12 had 566 
neurons with axon collaterals to nIV. Consistent with our categorization of nIV-projecting 567 
neurons as “nose-up/eyes-down” we could evoke significant downward eye movements 568 
in 10/12 fish (0.23° ± 0.16°, p < 0.05 relative to baseline for each fish, Figure 7D). Across 569 
all fish, the intensity of the projection in the MLF, an estimate of ChR2 expression, 570 
predicted the magnitude of the evoked response (Spearman’s rank correlation 571 
coefficient = 0.45, p = 0.02, n = 27). These results reveal that subsets of nIV-projecting 572 
vestibular neurons are sufficient, but vary in their ability to generate downward eye 573 
rotations. 574 

 575 
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A simple model shows how biased vestibular populations can 576 
better represent nose-up sensations without compromising motor 577 
performance 578 

Our data support the hypothesis that labeled premotor vestibular neurons are 579 
asymmetrically distributed, over-representing nose-up body tilts, and capable of 580 
producing downward eye rotations. To infer whether such an asymmetry might impact 581 
motor output and/or sensory encoding, we built a simple model of the synapse between 582 
vestibular and extraocular motoneurons. We simulated the ability of differently-sized 583 
populations to relay a step in body tilt (encoded by vestibular neuron activity) across 584 
a single synapse to produce an eye movement command (encoded by extraocular 585 
motoneuron activity). We constrained model parameters and assumptions to reflect 586 
known anatomical and electrophysiological properties (Methods). For this model, 587 
we assume that the activity of the vestibular neurons is a function of body tilt. We 588 
systematically varied two free parameters: the size of the vestibular population, and 589 
the number of vestibular neurons that contact a single extraocular motoneuron. As 590 
nose-up and nose-down neurons function during distinct phases of pitch tilts (Figure 591 
6) we simulated a single generic population. We evaluated two features of simulated 592 
motoneuron activity. First, as a measure of output strength, we report the average 593 
activity (reflecting the strength of ocular muscular contraction). Next, as a measure of 594 
encoding fidelity, we report the correlation between vestibular input and motoneuron 595 
output. 596 

We observed that the magnitude of motoneuron activity could be independent of the 597 
number of vestibular neurons upstream (vertical axis in Figure 8C). This dissociation 598 
derives from the fact that vestibular neurons encoding nose-up and nose-down body 599 
rotations converge on to distinct pools of motoneurons. Consequentially, the key 600 
variable that determines the magnitude of motoneuron activity is the number of inputs 601 
per motoneuron, not the size of the vestibular population from which it is derived. 602 
As expected, increasing the number of vestibular inputs onto a single motoneuron 603 
increased its firing rate asymptotically (horizontal axis in Figure 8C). We conclude 604 
that when downstream effectors are distinct, as for eye movements, a larger pool 605 
of premotor neurons does not necessarily predict differences in the magnitude of 606 
motoneuron output. For our system, an asymmetric vestibular circuit could maintain 607 
comparable behavioral responses along the eyes-up/eyes-down axis. 608 

In contrast, we observed that the size of the vestibular neuron pool could impact the 609 
ability of motoneurons to represent the dynamics of a step in body position. Temporal 610 
structure emerges in the activity patterns of post-synaptic neurons derived from small 611 
population sizes (Figure 8b). This similarity across motoneuron activity patterns 612 
reflected the coincidence of a limited set of inputs sufficient for a motoneuron spike at a 613 
particular time. To test if this limitation constrains the ability of motoneurons to represent 614 
the input function, we measured the variance in the input rate function explained by 615 2 616 
the summed motoneuron activity (R 617 
). Larger populations were indeed better than 618 
smaller populations, and performance varied with the precise number of pre-synaptic 619 
inputs (Figure 8D). Adding a basal level of activity equal to 15% of the peak response 620 
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decreased R2 but did not change the finding that larger populations were better at 621 
representing the input function. We infer from our model that the anatomical asymmetry 622 
we observe could permit better encoding of nose-up sensations without compromising 623 
gaze-stabilization. If sensory statistics were similarly biased, asymmetric projections 624 
from vestibular neurons might therefore be adaptive. 625 

 626 
Premotor vestibular neurons are necessary for a vital and 627 
asymmetric postural behavior 628 

To maintain buoyancy, larval zebrafish, whose gills do not yet function (Rombough, 629 
2007), must swim to and maintain a nose-up posture at the water’s surface, where they 630 
gulp air, inflating their swim bladder (Goolish and Okutake, 1999). Vestibular sensation 631 
is necessary: larval zebrafish without functional utricles fail to inflate their swim bladder 632 
and die (Riley and Moorman, 2000). In contrast, vision is not required for this behavior, 633 
as blind fish develop normal swim bladders. Gaze-stabilizing vestibular neurons send 634 
a second projection to a spinal premotor nucleus, the nucleus of the MLF (nucMLF) 635 
(Figure 1), indicating a potential postural role (Bianco et al., 2012). 636 

To test if vestibular neurons are necessary for swim-bladder inflation, we focally 637 
ablated vestibular neurons at 72hpf, before fish had inflated their swim bladder, in 638 
Tg(-6.7FRhcrtR:gal4VP16);Tg(14xUAS-E1b:hChR2(H134R)-EYFP) fish. We evaluated 639 
the fish at 144hpf (Figure 9). Only 1/9 lesioned fish (example in Movie M6) had an 640 
inflated swim bladder, compared with 40/42 control siblings (example in Movie M7). 641 
To confirm these results, we chemogenetically ablated vestibular neurons at 72 hpf 642 
in Tg(-6.7FRhcrtR:gal4VP16);Tg(UAS-E1b:Eco.NfsB-mCherry) fish. As with the 643 
targeted lesions, only 1/36 double-transgenic fish inflated their swim bladder and 644 
survived, while 36/36 of their non-expressing siblings did. We note that in contrast, 645 
fish with post-inflation loss of vestibular neurons (e.g. Figure 5) maintain normal 646 
swim bladders. These results define a novel role for vestibular neurons labeled in 647 
Tg(-6.7FRhcrtR:gal4VP16) in swim-bladder inflation. 648 

 649 

Discussion 650 

We investigated how the anatomical composition of a genetically-defined population 651 
of vestibular interneurons in the larval zebrafish could constrain its function. We first 652 
discovered that genetically-labeled neurons project preferentially to motoneurons that 653 
move the eyes downward. Ablation of these neurons eliminated the eye movements 654 
normally observed following nose-up/nose-down body tilts, establishing their necessity 655 
for gaze stabilization. Next, we found that activation produced downward eye rotations, 656 
establishing a functional correlate of the anatomical asymmetry. We modeled similar 657 
populations with asymmetric projections, and inferred that such architecture could 658 
permit better representation of nose-up stimuli while maintaining gaze stabilization 659 
performance. Finally, we discovered that early ablation of these neurons impaired swim 660 
bladder inflation, a vital postural task requiring nose-up stabilization. Taken together, 661 
we propose that preferential allocation of vestibular resources may improve sensory 662 
encoding, potentially enabling larval zebrafish to meet ethologically-relevant challenges 663 
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without compromising behavior. 664 

Our study used a transgenic line, Tg(-6.7FRhcrtR:gal4VP16) to reliably access a 665 
genetically defined set of neurons in rhombomeres 5-7 in the medial and tangential 666 
vestibular nuclei. The rhombomeric and medio-lateral location of these neurons is 667 
consistent with the neurons that receive utricular input in the adult frog (Straka, 2003) 668 
and chick (Popratiloff and Peusner, 2007) and comprises a subset of neurons that 669 
project to extraocular motoneurons in the larval frog (Straka et al., 2001), juvenile 670 
zebrafish/goldfish (Suwa et al., 1996) and chick (Gottesman-Davis and Peusner, 671 
2010). Tg(-6.7FRhcrtR:gal4VP16) does not label neurons within the superior vestibular 672 
nucleus in the rostral hindbrain (Cambronero and Puelles, 2000). This absence is 673 
notable in light of our ablation experiments that implicate only the neurons labeled 674 
in Tg(-6.7FRhcrtR:gal4VP16) as necessary for the torsional vestibulo-ocular reflex. 675 
Neurons in the superior vestibular nucleus receive input predominantly from the anterior 676 
canal and the lagena (Straka, 2003), and from the anterior canal in monkeys (Yamamoto 677 
et al., 1978). Larval zebrafish do not have functional semicircular canals (Beck et al., 678 
2004) nor has the lagena developed (Bever and Fekete, 2002) at the ages we studied 679 
here. Therefore, superior vestibular nucleus neurons would not be expected to respond 680 
to body rotations, consistent with our observation that the eyes no longer counter-rotate 681 
after lesions of Tg(-6.7FRhcrtR:gal4VP16) positive neurons. Further, the superior 682 
vestibular nucleus contains predominantly ipsilaterally-projecting, likely inhibitory inputs 683 
in adult rays (Puzdrowski and Leonard, 1994), goldfish (Torres et al., 2008, 1992), frog 684 
(Montgomery, 1988), rabbit (Wentzel et al., 1995), cat (Carpenter and Cowie, 1985) and 685 
monkey (Steiger and Büttner-Ennever, 1979). In the adult goldfish, such inhibitory inputs 686 
to extraocular motoneurons were found to be less effective relative to their excitatory 687 
counterparts. If the vestibular circuit were similarly constrained in larval zebrafish, it 688 
could explain the smaller downward eye movement we saw after collective activation 689 
of all neurons. There, the normal downward eye rotation would be compromised, 690 
though not eliminated, by inhibition derived from superior vestibular nucleus neurons not 691 
labeled in Tg(-6.7FRhcrtR:gal4VP16) but activated in a pan-neuronal line. We therefore 692 
propose that the inputs and output of superior vestibular nucleus neurons not labeled 693 
in Tg(-6.7FRhcrtR:gal4VP16) render them unlikely to play a major role in the larval 694 
zebrafish torsional vestibulo-ocular reflex. 695 

Previous work in larval zebrafish identified the tangential nucleus as the locus of 696 
neurons responsible for the utricle-dependent torsional vestibulo-ocular reflex (Bianco et 697 
al., 2012). Here, we show similarly profound impairment of the torsional vestibulo-ocular 698 
reflex after targeted ablation of a subset of vestibular interneurons in the tangential 699 
and medial vestibular nuclei that are labeled in Tg(-6.7FRhcrtR:gal4VP16) larvae. 700 
Therefore, we propose that the set of tangential nucleus neurons labeled in labeled 701 
in Tg(-6.7FRhcrtR:gal4VP16) are responsible for the utricle signal mediated torsional 702 
vestibulo-ocular reflex, as those were ablated both here and in Bianco et al. (2012). 703 
Similarly, previous single-cell fills of tangential nucleus neurons revealed three classes 704 
of projection neurons: those projecting to the contralateral tangential nucleus, those with 705 
a single ascending collateral to nIII/nIV and the nucleus of the MLF and those with both 706 
an ascending and descending branch. Ascending and ascending/descending neurons 707 
were represented roughly equally (7/16 and 6/16) in the tangential nucleus (Bianco et 708 
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al., 2012). However, we found that the labeled neurons in Tg(-6.7FRhcrtR:gal4VP16) 709 
were almost exclusively of the ascending type (25/27). We therefore propose a further 710 
refinement: the neurons responsible for the utricle-mediated torsional vestibulo-ocular 711 
reflex are likely the subpopulation of ascending neurons within the tangential nucleus 712 
labeled in Tg(-6.7FRhcrtR:gal4VP16). This proposal is consistent with anatomical and 713 
functional work in juvenile and adult goldfish, where tangential nucleus neurons with 714 
ascending processes were shown to respond to nose-up/nose-down tilts (Suwa et al., 715 
1999) Taken together, our molecular approach permits strong hypotheses that define the 716 
essential subset of vestibular neurons responsible for a particular behavior. 717 

The muscles that generate torsional eye movements in fish are responsible for vertical 718 
eye movements in frontal-eyed animals (Simpson and Graf, 1981). The behavioral 719 
literature is unclear with respect to whether nose-up/nose down gaze-stabilization is 720 
asymmetric. Cats may produce stronger downward eye rotations (Darlot et al., 1981; 721 
Maruyama et al., 2004; Tomko et al., 1988), but the literature is conflicted as to whether 722 
or not such an asymmetry exists in primates: downward (Baloh et al., 1983; Benson 723 
and Guedry, 1971; Matsuo and Cohen, 1984) or no biases (Baloh et al., 1986; Demer, 724 
1992; Marti et al., 2006) have both been reported. In foveate vertebrates, the vestibular 725 
brainstem contains the final premotor nuclei for smooth pursuit eye movements. Despite 726 
similar abilities to perceive both directions of vertical motion (Churchland et al., 2003), 727 
both juvenile and mature monkeys (Akao et al., 2007; Grasse and Lisberger, 1992) 728 
and humans (Ke et al., 2013) show a stronger downward response. Our model points 729 
a way forward: while common laboratory stimuli may elicit largely similar vertical eye 730 
movements, an asymmetric population should better encode dynamic variability, such 731 
as experienced in natural settings (Carriot et al., 2014). We propose that characterizing 732 
the variation in response to more complex body rotations and target tracking paradigms 733 
could uncover behavioral signatures of an anatomically biased circuit. 734 

We found that larval zebrafish do not inflate their swim bladders after early but not 735 
late ablation of vestibular neurons. As autonomic neurons are thought to determine 736 
swim bladder volume (Smith and Croll, 2011), we propose that the failure to inflate 737 
the swim bladder is secondary to postural impairments that follow loss of vestibular 738 
neurons labeled in Tg(-6.7FRhcrtR:gal4VP16). In addition to extraocular motor nuclei, 739 
these neurons project to the nucleus of the medial longitudinal fasciculus (nMLF) 740 
(Bianco et al., 2012). Recent work has established the necessity and sufficiency 741 
of spinal-projecting neurons in the larval zebrafish nMLF for postural control and 742 
swim initiation (Severi et al., 2014; Thiele et al., 2014; Wang and McLean, 2014). 743 
By virtue of their direct projections, and their necessity for swim bladder inflation, we 744 
propose that neurons labeled in Tg(-6.7FRhcrtR:gal4VP16) may affect posture by 745 
modulating activity of neurons in the nMLF. As such, our work thus establishes a new 746 
molecularly-accessible avenue to explore neural mechanisms underlying postural 747 
stabilization. 748 

Zebrafish engage in postural behaviors across their lifespan that are well-suited to 749 
nose-up sensory specialization. First, as larvae, they swim along a trajectory dictated 750 
by the long axis of their body (Aleyev, 1977). Their bodies are denser than water 751 
(Stewart and McHenry, 2010), which ought cause them to sink. Instead, they adopt a 752 
nose-up bias to their posture (Ehrlich and Schoppik, 2017), which introduces a vertical 753 
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component to their swims, enabling them to maintain elevation. Second, larval zebrafish 754 
must swim to the surface to gulp air necessary to inflate their swim bladder (Goolish 755 
and Okutake, 1999). Finally, most adult teleosts engage in aquatic surface respiration 756 
throughout life (Kramer and McClure, 1982), a response to low oxygen saturation that 757 
necessitates a continuous nose-up posture at the water’s surface. Our model shows 758 
how the anatomical makeup of the vestibular circuits could better encode the nose-up 759 
bias in the statistics of behavior. Our findings thus provide a premotor complement to 760 
the “efficient coding” framework used to relate the makeup of sensory systems to the 761 
statistics of the environment (Simoncelli, 2003). 762 

Asymmetrically organized populations of interneurons are common throughout nervous 763 
systems. Asymmetric organization within sensory areas is thought to reflect afferent 764 
adaptations (Adrian, 1941; Barlow, 1981; Bendor and Wang, 2006; Catania and 765 
Remple, 2002; Hansson and Stensmyr, 2011; Knudsen et al., 1987; Simoncelli, 2003; 766 
Xu et al., 2006) but the complexity of most neural circuits makes it challenging to link 767 
encoding capacity to adaptive behavior. For asymmetric motor populations, links to 768 
behavior are more direct (Esposito et al., 2014; Lemon, 2008; Pasqualetti et al., 2007; 769 
Rathelot and Strick, 2009) but the natural sensations that drive these areas are often 770 
difficult to define. Our study of vestibular interneurons that play both sensory and 771 
premotor roles illustrates how the asymmetric anatomy could better encode nose-up 772 
sensations, while maintaining the ability to stabilize gaze. As asymmetric populations 773 
of interneurons are common, we propose that other circuits may use similar strategies to 774 
meet ethological demands without compromising motor control. 775 
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 1074 
 1075 
 1076 
Figure 1: Vestibular nucleus neurons labeled in Tg(-6.7FRhcrtR:gal4VP16). A, The expression 1077 
pattern of Tg(-6.7FRhcrtR:gal4VP16); Tg(UAS-E1b:Kaede)s1999t (purple) is shown as a 1078 
horizontal maximum intensity projection (MIP), with one vestibular neuron, 1079 
co-labeled by focal electroporation of gap43-EGFP (white). Arrows point to the tangential (T 1080 
VN) and medial vestibular nuclei (M VN) and the medial longitudinal fasciculus (MLF). 1081 
Inset schematic of a dorsal view of a larval zebrafish, with a magenta rectangle indicating 1082 
the location of the image. Scale 50 μm B-C, Horizontal (B) and sagittal (C) MIP of vestibular 1083 
neurons in Tg(-6.7FRhcrtR:gal4VP16);Tg(UAS-KillerRed) (purple);Tg(isl1:GFP) (green, image 1084 
gamma = 0.5) showing cranial motoneuron somata from nIII/nIV, nV, and nVII (green text). 1085 
Arrows highlight neurons in the vestibular nuclei (VN) and the MLF. Scale 50 μm. D-F, Close-up 1086 
of white boxed region in 1C, showing major branch patterns of vestibular neuron axon fascicle 1087 
(purple) relative to extraocular motoneurons (green). 1D shows motoneurons from Tg(isl1:GFP) 1088 
(green) in nIV (magenta arrow), superior rectus motoneurons of nIII 1089 
(cyan arrow) and the midbrain/hindbrain boundary (white dotted line). 1E shows branches of 1090 
the vestibular neuron axon fascicle (purple), emerging from the MLF (white arrow) in 1091 
Tg(-6.7FRhcrtR:gal4VP16);Tg(UAS-KillerRed), projecting to nIV (magenta arrow) and nIII 1092 
(cyan arrow). F, merge of 1D-1E. Scale 20 μm. G-I, Broad and close-up views of vestibular 1093 
neuron axonal projection (purple) to nIII cell bodies (green), taken at the horizontal plane 1094 
delineated by the cyan dotted line in 1F, superior rectus (SR) motoneurons (nIII) encircled in 1095 
cyan. Cyan arrows in 1G localize close-ups in 1H and 1I. Scale 10 μm J-L, Broad and close-up 1096 
view of vestibular neuron axonal projection (purple) to nIV cell bodies (green), taken at the 1097 
horizontal plane delineated by the magenta dotted line in 1F, superior oblique (SO) 1098 
motoneurons (nIV, green) encircled in magenta. Arrows in 1J point to close-up in 1K and 1L. 1099 
Scale 10 μm. 1100 
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Figure 2:  Projections from singly labeled vestibular nucleus neurons. A, Horizontal MIP 1118 
of a single vestibular neuron labeled with UAS-ChR2(H134R)-EYFP (purple) in 1119 
Tg(-6.7FRhcrtR:gal4VP16);Tg(isl:GFP) (green). Gamma = 0.5 to highlight the sparse 1120 
label. Scale 100 μm. Pink triangle refers to the data in Figure 7D. 23/27 neurons studied 1121 
projected similarly. B, Sagittal MIP of the neuron in Figure 2A highlighting nIII (cyan arrow), nIV 1122 
(magenta arrow), and projection to nIV (white arrow). Scale 20 μm. C, Horizontal MIP of nIV 1123 
(green cell bodies in dotted magenta outline) from 2A, Vestibular neuron projection (purple, 1124 
white arrow) Scale 10 μm. D, Horizontal MIP of nIII (green cell bodies in dotted cyan outline) 1125 
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with no proximal vestibular neuron projection (purple) . E, Sagittal MIP of a single axon 1126 
expressing 14xUAS-E1b:hChR2(H134R)-EYFP (purple) 1127 
in Tg(-6.7FRhcrtR:gal4VP16);Tg(isl1:GFP) (green); Tg(atoh7:gap43-RFP)(cyan) fish. Expression 1128 
of bright EGFP bleeds into the purple channel, making the cell bodies white. nIV (magenta 1129 
arrow) nIII (cyan arrow) and the vestibular neuron projection to SR motoneurons in nIII (white 1130 
arrow). Scale 20 μm. 4/27 neurons projected similarly, exclusively to nIII. 1131 
F, Horizontal MIP of nIII (cells in blue outline) from 2e, purple projections from vestibular neuron 1132 
(white arrow). Scale 10 μm G, Horizontal MIP of nIV (cells in magenta outline) from 2e with no 1133 
purple vestibular neuron projection. Scale 10 μm. 1134 
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Figure 3: Tracings of two vestibular nucleus neurons from a single fish at two developmental 1158 
timepoints. A, Horizontal (top) and sagittal (bottom) projections of two traced neurons taken from 1159 
the same fish imaged at 5 days post-fertilization. The magenta trace shows the characteristic 1160 
projection to the nIV motoneuron pool (magenta arrows) while the green neuron does not. B, 1161 
Same two neurons traced in the same fish, at 11 days post-fertilization. The same projection to 1162 
nIV is visible in the magenta tracing (magenta arrow). Scale bars are 100 μm. 1163 
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Figure 4: Vestibular nucleus neurons show synaptophysin-positive puncta on their 1186 
motoneuron targets. A, Sagittal MIP of a labeled SO motoneuron (magenta arrow) in 1187 
green and the purple synaptic puncta labeled in Tg(-6.7FRhcrtR:gal4VP16); 1188 
Tg(5xUAS:sypb-GCaMP3). Dotted lines indicate the planes in 4B-4C, scale 20 μm. B,C, 1189 
Close-up slice of the motoneuron somata in 4A with puncta (magenta arrow), scale 10 1190 
μm. D, Close-up of a retrogradely labeled SR motoneuron soma (green) with visible purple 1191 
puncta (cyan arrow), Scale 10 μm. E, Close-up of the dendrites of SR motoneurons (green) with 1192 
visible purple puncta (cyan arrow). Scale 10 μm. 1193 
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Figure 5: Vestibular nucleus neurons labeled in Tg(-6.7FRhcrtR:gal4VP16) are necessary for 1214 
both nose-up and nose-down gaze stabilization. A, Horizontal MIP of vestibular and control 1215 
neurons (nVII) in rhombomeres 4-8 in Tg(-6.7FRhcrtR:gal4VP16); Tg(UAS-E1b:Kaede)s1999t; 1216 
Tg(isl1:GFP) fish before and after targeted photo-ablation of vestibular neuron cell bodies. 1217 
Gamma = 0.5 to highlight dim signal, colors indicates depth 1218 
over  150μm, white arrows point to the general region of targeted cell bodies in either the 1219 
vestibular nuclei (top row) or the facial nucleus (nVII), scale bar = 150 μm. For anatomical 1220 
localization compare to the right side of Figure 1B. B, Vestibulo-ocular reflex gain pre- and 1221 
post-ablation of vestibular neurons. C, Vestibulo-ocular reflex gain pre- and post-ablation of 1222 
facial nucleus neurons. D, Vestibulo-ocular reflex gain wild-type siblings (WT) and fish 1223 
with pharmacogenetic (nitroreductase, “nfsb”) and optogenetic ablation (Killer-Red, “KR”) of 1224 
neurons in Tg(-6.7FRhcrtR:gal4VP16) 1225 
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Figure 6: The simplified neural circuit underlying the ocular response to pitch and roll tilts. 1246 
Cyan = nose down, magenta = nose up channels. A, Wiring diagram of one hemisphere of 1247 
the excitatory vestibulo-ocular circuit showing utricular hair cells (cyan/magenta), 1248 
stato-acoustic ganglion (SAG), central vestibular neurons (VN, cyan and magenta), 1249 
extraocular motoneuron pools in nIII (SR, IR, IO) and nIV (SO). B, During a roll tilt to the fish’s 1250 
left, the left utricle hair cells (cyan/magenta) are activated, causing co-contraction of superior 1251 
(SO/SR) eye muscles ipsilateral to the activated utricle, and inferior (IO/IR) muscles 1252 
contralateral to the activated utricle. C, Utricular hair cells sensitive to nose-up 1253 
pitch tilts (magenta) ultimately activate only vestibular neurons that project to both nIII and nIV, 1254 
activating SO (contralateral) and IR (ipsilateral). D, Utricular hair cells sensitive to 1255 
nose-down pitch tilts (cyan) ultimately activate vestibular neurons that project to exclusively to nIII, 1256 
activating SR (contralateral) and IO (ipsilateral). 1257 
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Figure 7: Activating vestibular nucleus neurons generates downward eye rotations. A, Peak 1278 
eye rotation as a function of blue light duration. Positive values indicate eyes-down rotations 1279 
(magenta arrow), negative values are eyes-up (cyan arrow). ChR2+ fish in black, 1280 
ChR2- siblings in gray. Points are median ± median absolute deviation. B, Evoked eye 1281 
rotation in time. Gray lines are individual fish, black lines the median of pre-lesion data, 1282 
red lines are the same fish after photoablation of ChR2+ vestibular neurons. Stimulus (100 ms) in 1283 
blue. C, Gray lines are the average responses from individual fish with pan-neuronal expression. 1284 
Black is the median across fish, stimulus (100 ms) in blue. The trace with a downward lobe 1285 
reflects a non-torsional component; video of this fish is shown as Movie M4. D, Evoked ocular 1286 
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rotations from sparsely labeled fish as a function of ChR2+ expression (MLF fluorescence). Fish 1287 
with discriminable vestibular neurons shown as black dots, without in green. The pink triangle 1288 
corresponds to the fish in Figure 2A 1289 
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Figure 8:  A, Model schematic B, One simulation of the model for two different population sizes, 1312 
180 neurons (magenta) and 30 neurons (cyan). The first column shows the vestibular neuron 1313 
activity as a spike raster plot and the input function (black). The second column shows the 1314 
motoneuron spikes. For display, half the generated spikes are shown in each raster. C, The 1315 
“Output strength” (average firing rate) of the post-synaptic neurons as a function of the 1316 
population size (rows) and number of inputs per motoneuron (columns). D, The “Encoding 1317 
fidelity” (variance explained, R ) in the input rate function by the summed post-synaptic output. 1318 
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Figure 9: Early ablations of vestibular neurons leave fish unable to inflate their swim bladders. 1343 
a) Tg(-6.7FRhcrtR:gal4VP16); Tg(14xUAS-E1b:hChR2(H134R)-EYFP); mitfa -/- fish swimming 1344 
in a cuvette in the dark at 144hpf. Red arrows point to swim bladders. b) Sibling fish where the 1345 
vestibular neurons in these fish were photoablated at 72hpf, before swim bladder inflation. Note 1346 
the absence of a swim bladder, evaluated here at 144hpf. 1347 
Images are taken from Movies M6-M7. 1348 
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Movie Legends 1364 

Movie M1: Reconstruction of an nIV-projecting neuron. 1365 

Data is taken from the same confocal stack shown in Figure 2A-2D. The neuron 1366 
is shown in black, colored spheres represent the center locus of cell bodies of nIV 1367 
(magenta) and nIII (cyan) cranial motoneurons. The movie begins with the neuron in 1368 
a horizontal orientation, rotates 90° along the x axis until it is sagittal, and then rotates 1369 
90° along the y axis such that the viewer looks caudally down the long axis of the fish 1370 
towards the tail. The large projection to nIV is clearly visible. Scale bar is 25 μm for all 1371 
three axes. 1372 

 1373 
Movie M2: Reconstruction of an nIII-projecting neuron. 1374 

Data is taken from the same confocal stack shown in Figure 2E-2G. The neuron 1375 
is shown in black, colored spheres represent the center locus of cell bodies of nIV 1376 
(magenta) and nIII (cyan) cranial motoneurons. The movie begins with the neuron in a 1377 
horizontal orientation, rotates 90° along the x axis until it is sagittal, and then rotates 90° 1378 
along the y axis such that the viewer looks caudally down the long axis of the fish 1379 
towards the tail. The terminal arbors of this neuron are considerably more restricted 1380 
than the neuron in M2, and bypass nIV, terminating in nIII. Scale bar is 25 μm for all 1381 
three axes. 1382 
Movie M3: A sample eye movement evoked by a blue light flash in 1383 
wild-type fish. 1384 

The left eye of a wild-type fish responding to a flash of blue light. Green box reflects 1385 
the realtime estimate of the eye’s rotation. Movie is 4 sec, with a 100msec flash after 2 1386 
sec. For clarity, the original video was enlarged 4x and slowed down 4-fold (200Hz 1387 
acquisition, 50Hz playback). 1388 

 1389 
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Movie M4: A sample eye movement evoked by a blue light flash in 1390 
fish expressing channelrhodopsin in vestibular neurons. 1391 

The left eye of a Tg(-6.7FRhcrtR:gal4VP16); Tg(14xUAS-E1b:hChR2(H134R)-EYFP); 1392 
atoh7th241/th241; Tg(atoh7:gap43-RFP) fish responding to a flash of blue light. Gray 1393 
box reflects the realtime estimate of the eye’s rotation. Movie is 3.6sec long, with a 1394 
100msec flash at 1.2sec indicated by a cyan circle. 1395 
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 1397 
Movie M5: A sample eye movement evoked in a fish with 1398 
pan-neuronal  channelrhodopsin. 1399 

The left eye of a Tg(s1101t:gal4); Tg(14xUAS-E1b:hChR2(H134R)-EYFP); 1400 
atoh7th241/th241; Tg(atoh7:gap43-RFP) fish responding to a flash of blue light. Green 1401 
box reflects the realtime estimate of the eye’s rotation. Movie is 4 sec, with a 100ms flash 1402 
after 2 sec. For clarity, the original video was enlarged 4x and slowed down 4-fold 1403 
(200Hz acquisition, 50Hz playback). Note the rapid and transient change in the angle of 1404 
the green square at the initiation of the evoked eye movement. This reflects the tracker 1405 
failing due to the nasal-ward component of the eye’s contraction. After the brief failure 1406 
of the tracker, it recovers, and the downward torsional component of the eye movement 1407 
becomes visible. 1408 

 1409 
Movie M6: Fish without vestibular neurons swimming in a cuvette. 1410 

Tg(-6.7FRhcrtR:gal4VP16); Tg(14xUAS-E1b:hChR2(H134R)-EYFP); mitfa -/- fish 1411 
swimming in a cuvette. Vestibular neurons in these fish were photoablated at 72hpf, 1412 
before swim bladder inflation. Note the absence of a swim bladder, evaluated here at 1413 
144hpf. These fish are siblings of the fish in Movie M7. 1414 

 1415 
Movie M7: Fish swimming in a cuvette. 1416 

Tg(-6.7FRhcrtR:gal4VP16); Tg(14xUAS-E1b:hChR2(H134R)-EYFP); mitfa -/- fish filmed 1417 
at 144hpf. Note the presence of a swim bladder. These fish are siblings of the fish in 1418 
Movie M6. 1419 
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