120 research outputs found
Gründung eines Heimatvereins in Londorf
Recent cases of successful control of human immunodeficiency virus (HIV) by bone marrow transplant in combination with suppressive antiretroviral therapy (ART) and very early initiation of ART have provided proof of concept that HIV infection might now be cured. Current efforts focusing on gene therapy, boosting HIV-specific immunity, reducing inflammation and activation of latency have all been the subject of recent excellent reviews. We now propose an additional avenue of research towards a cure for HIV: targeting HIV apoptosis regulatory pathways. The central enigma of HIV disease is that HIV infection kills most of the CD4 T cells that it infects, but those cells that are spared subsequently become a latent reservoir for HIV against which current medications are ineffective. We propose that if strategies could be devised which would favor the death of all cells which HIV infects, or if all latently infected cells that release HIV would succumb to viral-induced cytotoxicity, then these approaches combined with effective ART to prevent spreading infection, would together result in a cure for HIV. This premise is supported by observations in other viral systems where the relationship between productive infection, apoptosis resistance, and the development of latency or persistence has been established. Therefore we propose that research focused at understanding the mechanisms by which HIV induces apoptosis of infected cells, and ways that some cells escape the pro-apoptotic effects of productive HIV infection are critical to devising novel and rational approaches to cure HIV infection
Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.
Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease
Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 μM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART
Using death to one's advantage: HIV modulation of apoptosis
Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down- regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis. Originally published Leukemia, Vol. 15, No. 3, Mar 200
An Initial In Vitro Investigation into the Potential Therapeutic Use of SupT1 Cells to Prevent AIDS in HIV-Seropositive Individuals
HIV infection usually leads to a progressive decline in number and functionality of CD4+ T lymphocytes, resulting in AIDS development. In this study, I investigated the strategy of using inoculated SupT1 cells to move infection from HIV-1 X4 strains toward the inoculated cells, which should theoretically prevent infection and depletion of normal CD4+ T cells, preventing the development of AIDS-related pathologies. Interestingly, the persistent in vitro replication in SupT1 cells renders the virus less cytopathic and more sensitive to antibody-mediated neutralization, suggesting that replication of the virus in the inoculated SupT1 cells may have a vaccination effect in the long run. In order to mimic the scenario of a therapy in which SupT1 cells are inoculated in an HIV-seropositive patient, I used infected SupT1/PBMC cocultures and a series of control experiments. Infections were done with equal amounts of the wild type HIV-1 LAI virus. The SupT1 CD4+CD8+ T cell population was distinguished from the PBMC CD4+CD8− T cell population by FACS analysis. The results of this study show that the virus-mediated killing of primary CD4+ T cells in the SupT1/PBMC cocultures was significantly delayed, suggesting that the preferential infection of SupT1 cells can induce the virus to spare primary CD4+ T cells from infection and depletion. The preferential infection of SupT1 cells can be explained by the higher viral tropism for the SupT1 cell line. In conclusion, this study demonstrates that it's possible in an in vitro system to use SupT1 cells to prevent HIV infection of primary CD4+ T cells, suggesting that further exploration of the SupT1 cell line as a cell-based therapy against HIV-1 may prove worthwhile
Chronic back problems and labor force participation in a national population survey: impact of comorbid arthritis
Real patient learning integrated in a preclinical block musculoskeletal disorders. Does it make a difference?
Although musculoskeletal disorders are the most common reason for general practitioner visits, training did not keep pace. Implementation of learning from patients with rheumatologic disorders linked together with the teaching of theoretical knowledge in the preclinical medical education might be an important step forward in the improvement of quality of care for these patients. The Leiden Medical School curriculum has implemented two non-obligatory real patient learning (RPL) practicals integrated within the preclinical block musculoskeletal disorders. This study investigates the educational effectiveness of the practicals, the expectations students have of RPL, and students’ satisfaction. Participants’ grades on the end-of-block test served as the test results of the educational effectiveness of the practicals and were compared with those of the non-participants. Qualitative data was collected by means of questionnaires generated by focus groups. The participants in practicals scored significantly higher at the end-of-block test. The expected effects of the contact with real patients concerned positive effects on cognition and skills. ‘Contextualizing of the theory’, ‘better memorizing of clinical pictures’, and ‘understanding of the impact of the disease’ were the most frequently mentioned effects of the practicals. Overall, the participants were (very) enthusiastic about this educational format. The RPL practicals integrated within a preclinical block musculoskeletal disorders are a valuable addition to the Leiden medical curriculum. This relatively limited intervention exhibits a strong effect on students’ performance in tests. Future research should be directed towards the long-term effects of this intervention
HIV gp120 Induces, NF-κB Dependent, HIV Replication that Requires Procaspase 8
HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication.We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we demonstrate that the caspase 8 cleavage fragment Caspase8p43, activates p50/p65 Nuclear Factor kappaB (NF-kappaB), in a manner which is inhibited by dominant negative IkappaBalpha. This caspase 8 dependent NF-kappaB activation occurs following stimulation with gp120, TNF, or CD3/CD28 crosslinking, but these treatments do not activate NF-kappaB in cells deficient in caspase 8. The Casp8p43 cleavage fragment also transactivates the HIV LTR through NF-kappaB, and the absence of caspase 8 following HIV infection greatly inhibits HIV replication.Gp120 induced caspase 8 dependent NF-kappaB activation is a novel pathway of HIV replication which increases understanding of the biology of T-cell death, as well as having implications for understanding treatment and prevention of HIV infection
The impact of trained patient educators on musculoskeletal clinical skills attainment in pre-clerkship medical students
<p>Abstract</p> <p>Background</p> <p>Despite the high burden of musculoskeletal (MSK) diseases, few generalists are comfortable teaching MSK physical examination (PE) skills. Patient Partners<sup>® </sup>in Arthritis (PP<sup>®</sup>IA) is a standardized patient educator program that could potentially supplement current MSK PE teaching. This study aims to determine if differences exist in MSK PE skills between non-MSK specialist physician and PP<sup>®</sup>IA taught students.</p> <p>Methods</p> <p>Pre-clerkship medical students attended 2-hour small group MSK PE teaching by either non-MSK specialist physician tutors or by PP<sup>®</sup>IA. All students underwent an MSK OSCE and completed retrospective pre-post questionnaires regarding comfort with MSK PE and interest in MSK.</p> <p>Results</p> <p>83 students completed the OSCE (42 PP<sup>®</sup>IA, 41 physician taught) and 82 completed the questionnaire (42 PP<sup>®</sup>IA, 40 physician taught). There were no significant differences between groups in OSCE scores. For all questionnaire items, post-session ratings were significantly higher than pre-session ratings for both groups. In exploratory analysis PP<sup>®</sup>IA students showed significantly greater improvement in 12 of 22 questions including three of five patient-centred learning questions.</p> <p>Conclusions</p> <p>PP<sup>®</sup>IA MSK PE teaching is as good as non-MSK specialist physician tutor teaching when measured by a five station OSCE and provide an excellent complementary resource to address current deficits in MSK PE teaching.</p
Viremic HIV Infected Individuals with High CD4 T Cells and Functional Envelope Proteins Show Anti-gp41 Antibodies with Unique Specificity and Function
BACKGROUND: CD4 T-cell decay is variable among HIV-infected individuals. In exceptional cases, CD4 T-cell counts remain stable despite high plasma viremia. HIV envelope glycoprotein (Env) properties, namely tropism, fusion or the ability to induce the NK ligand NKp44L, or host factors that modulate Env cytopathic mechanisms may be modified in such situation. METHODS: We identified untreated HIV-infected individuals showing non-cytopathic replication (VL>10,000 copies/mL and CD4 T-cell decay<50 cells/µL/year, Viremic Non Progressors, VNP) or rapid progression (CD4 T-cells<350 cells/µL within three years post-infection, RP). We isolated full-length Env clones and analyzed their functions (tropism, fusion activity and capacity to induce NKp44L expression on CD4 cells). Anti-Env humoral responses were also analyzed. RESULTS: Env clones isolated from VNP or RP individuals showed no major phenotypic differences. The percentage of functional clones was similar in both groups. All clones tested were CCR5-tropic and showed comparable expression and fusogenic activity. Moreover, no differences were observed in their capacity to induce NKp44L expression on CD4 T cells from healthy donors through the 3S epitope of gp41. In contrast, anti- Env antibodies showed clear functional differences: plasma from VNPs had significantly higher capacity than RPs to block NKp44L induction by autologous viruses. Consistently, CD4 T-cells isolated from VNPs showed undetectable NKp44L expression and specific antibodies against a variable region flanking the highly conserved 3S epitope were identified in plasma samples from these patients. Conversely, despite continuous antigen stimulation, VNPs were unable to mount a broad neutralizing response against HIV. CONCLUSIONS: Env functions (fusion and induction of NKp44L) were similar in viremic patients with slow or rapid progression to AIDS. However, differences in humoral responses against gp41 epitopes nearby 3S sequence may contribute to the lack of CD4 T cell decay in VNPs by blocking the induction of NKp44L by gp41
- …
