50 research outputs found

    Mutation screening of the RNF8, UBC13 and MMS2 genes in Northern Finnish breast cancer families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently known susceptibility genes such as <it>BRCA1 </it>and <it>BRCA2 </it>explain less than 25% of familial aggregation of breast cancer, which suggests the involvement of additional susceptibility genes. RNF8, UBC13 and MMS2 are involved in the DNA damage response pathway and play important roles in BRCA1-mediated DNA damage recognition. Based on the evidence that several players in the ubiquitin-mediated BRCA1-dependent DDR seem to contribute to breast cancer predisposition, <it>RNF8, UBC13 </it>and <it>MMS2 </it>were considered plausible candidate genes for susceptibility to breast cancer.</p> <p>Methods</p> <p>The entire coding region and splice junctions of <it>RNF8, UBC13 </it>and <it>MMS2 </it>genes were screened for mutations in affected index cases from 123 Northern Finnish breast cancer families by using conformation sensitive gel electrophoresis, high resolution melting (HRM) analysis and direct sequencing.</p> <p>Results</p> <p>Mutation analysis revealed several changes in <it>RNF8 </it>and <it>UBC13</it>, whereas no aberrations were observed in <it>MMS2</it>. None of the found sequence changes appeared to associate with breast cancer susceptibility.</p> <p>Conclusions</p> <p>The present data suggest that mutations in <it>RNF8, UBC13 </it>and <it>MMS2 </it>genes unlikely make any sizeable contribution to breast cancer predisposition in Northern Finland.</p

    Cell-Cell Contact Preserves Cell Viability via Plakoglobin

    Get PDF
    Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols

    Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia

    Get PDF
    Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (∼80%) represented gains. In addition, ∼10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses

    Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity.

    Get PDF
    DNA double-strand breaks (DSBs) are perhaps the most toxic of all DNA lesions, with defects in the DNA-damage response to DSBs being associated with various human diseases. Although it is known that DSB repair pathways are tightly regulated by ubiquitylation, we do not yet have a comprehensive understanding of how deubiquitylating enzymes (DUBs) function in DSB responses. Here, by carrying out a multidimensional screening strategy for human DUBs, we identify several with hitherto unknown links to DSB repair, the G2/M DNA-damage checkpoint and genome-integrity maintenance. Phylogenetic analyses reveal functional clustering within certain DUB subgroups, suggesting evolutionally conserved functions and/or related modes of action. Furthermore, we establish that the DUB UCHL5 regulates DSB resection and repair by homologous recombination through protecting its interactor, NFRKB, from degradation. Collectively, our findings extend the list of DUBs promoting the maintenance of genome integrity, and highlight their potential as therapeutic targets for cancer.This is the author's accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ncb302

    Induction of interferon-stimulated genes on the IL-4 response axis by Epstein-Barr virus infected human b cells; relevance to cellular transformation.

    Get PDF
    Epstein-Barr virus (EBV) is an oncogenic virus that is associated with the pathogenesis of several human lymphoid malignancies, including Hodgkin's lymphoma. Infection of normal resting B cells with EBV results in activation to lymphoblasts that are phenotypically similar to those generated by physiological stimulation with CD40L plus IL-4. One important difference is that infection leads to the establishment of permanently growing lymphoblastoid cell lines, whereas CD40L/IL-4 blasts have finite proliferation lifespans. To identify early events which might later determine why EBV infected blasts go on to establish transformed cell lines, we performed global transcriptome analyses on resting B cells and on EBV and CD40L/IL-4 blasts after 7 days culture. As anticipated there was considerable overlap in the transcriptomes of the two types of lymphoblasts when compared to the original resting B cells, reflecting common changes associated with lymphocyte activation and proliferation. Of interest to us was a subset of 255 genes that were differentially expressed between EBV and CD40L/IL-4 blasts. Genes which were more highly expressed in EBV blasts were substantially and significantly enriched for a set of interferon-stimulated genes which on further in silico analyses were found to be repressed by IL-4 in other cell contexts and to be up-regulated in micro-dissected malignant cells from Hodgkin's lymphoma biopsies when compared to their normal germinal center cell counterparts. We hypothesized that EBV and IL-4 were targeting and discordantly regulating a common set of genes. This was supported experimentally in our B cell model where IL-4 stimulation partially reversed transcriptional changes which follow EBV infection and it impaired the efficiency of EBV-induced B cell transformation. Taken together, these data suggest that the discordant regulation of interferon and IL-4 pathway genes by EBV that occurs early following infection of B cells has relevance to the development or maintenance of an EBV-associated malignancy

    Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome

    Get PDF
    Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals

    Postoperative acute kidney injury in adult non-cardiac surgery:joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative

    Get PDF
    Postoperative acute kidney injury (PO-AKI) is a common complication of major surgery that is strongly associated with short-term surgical complications and long-term adverse outcomes, including increased risk of chronic kidney disease, cardiovascular events and death. Risk factors for PO-AKI include older age and comorbid diseases such as chronic kidney disease and diabetes mellitus. PO-AKI is best defined as AKI occurring within 7 days of an operative intervention using the Kidney Disease Improving Global Outcomes (KDIGO) definition of AKI; however, additional prognostic information may be gained from detailed clinical assessment and other diagnostic investigations in the form of a focused kidney health assessment (KHA). Prevention of PO-AKI is largely based on identification of high baseline risk, monitoring and reduction of nephrotoxic insults, whereas treatment involves the application of a bundle of interventions to avoid secondary kidney injury and mitigate the severity of AKI. As PO-AKI is strongly associated with long-term adverse outcomes, some form of follow-up KHA is essential; however, the form and location of this will be dictated by the nature and severity of the AKI. In this Consensus Statement, we provide graded recommendations for AKI after non-cardiac surgery and highlight priorities for future research

    RNAi Screening Implicates a SKN-1-Dependent Transcriptional Response in Stress Resistance and Longevity Deriving from Translation Inhibition

    Get PDF
    Caenorhabditis elegans SKN-1 (ortholog of mammalian Nrf1/2/3) is critical for oxidative stress resistance and promotes longevity under reduced insulin/IGF-1-like signaling (IIS), dietary restriction (DR), and normal conditions. SKN-1 inducibly activates genes involved in detoxification, protein homeostasis, and other functions in response to stress. Here we used genome-scale RNA interference (RNAi) screening to identify mechanisms that prevent inappropriate SKN-1 target gene expression under non-stressed conditions. We identified 41 genes for which knockdown leads to activation of a SKN-1 target gene (gcs-1) through skn-1-dependent or other mechanisms. These genes correspond to multiple cellular processes, including mRNA translation. Inhibition of translation is known to increase longevity and stress resistance and may be important for DR-induced lifespan extension. One model postulates that these effects derive from reduced energy needs, but various observations suggest that specific longevity pathways are involved. Here we show that translation initiation factor RNAi robustly induces SKN-1 target gene transcription and confers skn-1-dependent oxidative stress resistance. The accompanying increases in longevity are mediated largely through the activities of SKN-1 and the transcription factor DAF-16 (FOXO), which is required for longevity that derives from reduced IIS. Our results indicate that the SKN-1 detoxification gene network monitors various metabolic and regulatory processes. Interference with one of these processes, translation initiation, leads to a transcriptional response whereby SKN-1 promotes stress resistance and functions together with DAF-16 to extend lifespan. This stress response may be beneficial for coping with situations that are associated with reduced protein synthesis

    Analysis of DNA methylation at birth and in childhood reveals changes associated with season of birth and latitude

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. Individual cohort-level data can be obtained from the respective cohort (see Additional file 1: Table S1 and Additional file 2 for cohort details).BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.Wellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC)Biotechnology and Biological Sciences Research Council (BBSRC)European Union’s Horizon 2020Economic and Social Research Council (ESRC)Medical Research Council (MRC)Medical Research Council (MRC)European UnionSwedish foundation for strategic research (SSF)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Environmental Protection Agency (EPA)National Cancer Institute Cancer CenterNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Environmental Protection Agency (EPA)Environmental Protection Agency (EPA)European UnionEuropean UnionEuropean UnionEuropean UnionEuropean Union’s Horizon 2020European Research Council (ERC)German Ministry of Education and ResearchNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Autism SpeaksNational Institutes of Health (NIH)National Institutes of Health (NIH)European UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean UnionEuropean Research Council (ERC)Flemisch Scientific Research CouncilFlemisch Scientific Research CouncilFlemisch Scientific Research CouncilEuropean UnionFonds de recherche du Québec - Santé (FRQS)Canadian Institute of Health Research (CIHR)Canadian Institute of Health Research (CIHR)Netherlands Organisation for Scientific Research (NWO)National Institute of Child and Human DevelopmentEuropean Union’s Horizon 2020European Union’s Horizon 2020European Union’s Horizon 2020ZonMwZonMwMedical Research Council Integrative Epidemiology Unit (University of Bristol)Netherlands Heart FoundationNetherlands Heart FoundationNetherlands Organisation for Scientific Research (NWO)European UnionNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Spanish Ministry of ScienceNational Institute for Health and Care Research (NIHR)Wellcome TrustNorwegian Ministry of Health and the Ministry of Education and ResearchNorwegian Ministry of Health and the Ministry of Education and ResearchNorwegian Ministry of Health and the Ministry of Education and ResearchLithuanian Agency for Science Innovation and TechnologySpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthSpanish Ministry of HealthInstituto de Salud Carlos IIIInstituto de Salud Carlos IIIEuropean Research Council (ERC)CDMRP/Department of DefenseNIGMSNational Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Asthma Campaign, UKNational Institutes of Health (NIH)Medical Research Council (MRC)National Institutes of Health (NIH)Norwegian Research CouncilNational Institute of Environmental Health SciencesResearch Council of NorwayNational Institute of Environmental Health SciencesNational Institute of Environmental Health SciencesNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institute of Environmental Health SciencesNational Institute of Environmental Health SciencesSwedish Research CouncilSwedish Initiative for research on Microdata in the Social And Medical Sciences (SIMSAM)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)National Institutes of Health (NIH)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Medical Research Council Integrative Epidemiology Unit (University of Bristol)Swedish Heart-Lung FoundationUniversity of MunichFoundation for Medical Research (FRM)National Agency for ResearchNational Institute for Research in Public HealthFrench Ministry of HealthFrench Ministry of ResearchInserm Bone and Joint Diseases National Research (PRO-A) and Human Nutrition National Research ProgramsParis–Sud UniversityNestléFrench National Institute for Population Health SurveillanceFrench National Institute for Health EducationFrench Agency for Environmental Health SafetyMutuelle Générale de l’Education NationaleFrench National Agency for Food SecurityFrench-speaking association for the study of diabetes and metabolismItalian National Centre for Disease Prevention and ControlItalian Ministry of HealthGreek Ministry of HealthFlemish Government (Department of Economy, Science and Innovations, Agency for Care and Health and Department of Environment)The Research Foundation-FlandersFlemish Institute for Technological ResearchDiabète QuébecErasmus University RotterdamNetherlands Organization for Health Research and Development and the Ministry of Health, Welfare and SportErasmus MCDanish National Research FoundationDanish Regional CommitteesNovo Nordisk FoundationLundbeck FoundationHelmholtz Center for Environmental ResearchGerman Cancer Research CentreAcademy of FinlandEraNetEVOUniversity of Helsinki Research FundsSigne and Ane Gyllenberg foundationEmil Aaltonen FoundationFinnish Medical FoundationJane and Aatos Erkko FoundationJuho Vainio foundationYrjö Jahnsson foundationJalmari and Rauha Ahokas foundationPaivikki and Sakari Sohlberg FoundationSigrid Juselius FoundationSir Jules Thorn Charitable TrustSwedish Asthma and Allergy Association's Research FoundationStiftelsen Frimurare Barnhuset Stockhol
    corecore