281 research outputs found
Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species
Accreting Black Holes
This chapter provides a general overview of the theory and observations of
black holes in the Universe and on their interpretation. We briefly review the
black hole classes, accretion disk models, spectral state classification, the
AGN classification, and the leading techniques for measuring black hole spins.
We also introduce quasi-periodic oscillations, the shadow of black holes, and
the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin
note: substantial text overlap with arXiv:1711.1025
Synchronous malignant vagal paraganglioma with contralateral carotid body paraganglioma treated by radiation therapy
Paragangliomas are rare tumors and very few cases of malignant vagal paraganglioma with synchronous carotid body paraganglioma have been reported. We report a case of a 20-year old male who presented with slow growing bilateral neck masses of eight years duration. He had symptoms of dysphagia to solids, occasional mouth breathing and hoarseness of voice. Fine needle aspiration cytology (FNAC) performed where he lived showed a sinus histiocytosis and he was administered anti-tubercular treatment for six months without any improvement in his symptoms. His physical examination revealed pulsatile, soft to firm, non-tender swellings over the anterolateral neck confined to the upper-mid jugulo-diagastric region on both sides. Direct laryngoscopy examination revealed a bulge on the posterior pharyngeal wall and another over the right lateral pharyngeal wall. Magnetic resonance imaging (MRI), 99mTc-labeled octreotide scan and angiography diagnosed the swellings as carotid body paraganglioma, stage III on the right side with left-sided vagal malignant paraganglioma. Surgery was ruled out as a high morbidity with additional risk to life was expected due to the highly vascular nature of the tumor. The patient was treated with radiation therapy by image guided radiation to a dose of 5040cGy in 28 fractions. At a follow-up at 16 months, the tumors have regressed bilaterally and the patient can take solids with ease
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
The D4Z4 Macrosatellite Repeat Acts as a CTCF and A-Type Lamins-Dependent Insulator in Facio-Scapulo-Humeral Dystrophy
Both genetic and epigenetic alterations contribute to Facio-Scapulo-Humeral Dystrophy (FSHD), which is linked to the shortening of the array of D4Z4 repeats at the 4q35 locus. The consequence of this rearrangement remains enigmatic, but deletion of this 3.3-kb macrosatellite element might affect the expression of the FSHD-associated gene(s) through position effect mechanisms. We investigated this hypothesis by creating a large collection of constructs carrying 1 to >11 D4Z4 repeats integrated into the human genome, either at random sites or proximal to a telomere, mimicking thereby the organization of the 4q35 locus. We show that D4Z4 acts as an insulator that interferes with enhancer–promoter communication and protects transgenes from position effect. This last property depends on both CTCF and A-type Lamins. We further demonstrate that both anti-silencing activity of D4Z4 and CTCF binding are lost upon multimerization of the repeat in cells from FSHD patients compared to control myoblasts from healthy individuals, suggesting that FSHD corresponds to a gain-of-function of CTCF at the residual D4Z4 repeats. We propose that contraction of the D4Z4 array contributes to FSHD physio-pathology by acting as a CTCF-dependent insulator in patients
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
High Seroprevalence of Rift Valley Fever and Evidence for Endemic Circulation in Mbeya Region, Tanzania, in a Cross-Sectional Study
We describe a high seropositivity rate for Rift Valley fever virus, in up to 29.3% of tested individuals from the shore of Lake Malawi in southwestern Tanzania, and much lower rates from areas distant to the lake. Rift Valley fever disease or outbreaks have not been observed there in the past, which suggests that the virus is circulating under locally favorable conditions and is either a non-pathogenic strain, or that occasional occurrence of disease is missed. We were able to identify a low socio-economic status and cattle ownership as possible socio-economic risk factors for an individual to be seropositive. Environmental risk factors associated with seropositivity include dense vegetation, and ambient land surface temperatures which may be important for breeding success of the mosquitoes which transmit Rift Valley fever, and for efficient multiplication of the virus in the mosquito. Low elevation of the home, and proximity to Lake Malawi probably lead to abundant surface water collections, which serve as breeding places for mosquitoes. These findings will inform patient care in the areas close to Lake Malawi, and may help to design models which predict low-level virus circulation
Route planning with transportation network maps: an eye-tracking study.
Planning routes using transportation network maps is a common task that has received little attention in the literature. Here, we present a novel eye-tracking paradigm to investigate psychological processes and mechanisms involved in such a route planning. In the experiment, participants were first presented with an origin and destination pair before we presented them with fictitious public transportation maps. Their task was to find the connecting route that required the minimum number of transfers. Based on participants' gaze behaviour, each trial was split into two phases: (1) the search for origin and destination phase, i.e., the initial phase of the trial until participants gazed at both origin and destination at least once and (2) the route planning and selection phase. Comparisons of other eye-tracking measures between these phases and the time to complete them, which depended on the complexity of the planning task, suggest that these two phases are indeed distinct and supported by different cognitive processes. For example, participants spent more time attending the centre of the map during the initial search phase, before directing their attention to connecting stations, where transitions between lines were possible. Our results provide novel insights into the psychological processes involved in route planning from maps. The findings are discussed in relation to the current theories of route planning
A mathematical model of the metabolic and perfusion effects on cortical spreading depression
Cortical spreading depression (CSD) is a slow-moving ionic and metabolic
disturbance that propagates in cortical brain tissue. In addition to massive
cellular depolarization, CSD also involves significant changes in perfusion and
metabolism -- aspects of CSD that had not been modeled and are important to
traumatic brain injury, subarachnoid hemorrhage, stroke, and migraine.
In this study, we develop a mathematical model for CSD where we focus on
modeling the features essential to understanding the implications of
neurovascular coupling during CSD. In our model, the sodium-potassium--ATPase,
mainly responsible for ionic homeostasis and active during CSD, operates at a
rate that is dependent on the supply of oxygen. The supply of oxygen is
determined by modeling blood flow through a lumped vascular tree with an
effective local vessel radius that is controlled by the extracellular potassium
concentration. We show that during CSD, the metabolic demands of the cortex
exceed the physiological limits placed on oxygen delivery, regardless of
vascular constriction or dilation. However, vasoconstriction and vasodilation
play important roles in the propagation of CSD and its recovery. Our model
replicates the qualitative and quantitative behavior of CSD --
vasoconstriction, oxygen depletion, extracellular potassium elevation,
prolonged depolarization -- found in experimental studies.
We predict faster, longer duration CSD in vivo than in vitro due to the
contribution of the vasculature. Our results also help explain some of the
variability of CSD between species and even within the same animal. These
results have clinical and translational implications, as they allow for more
precise in vitro, in vivo, and in silico exploration of a phenomenon broadly
relevant to neurological disease.Comment: 17 pages including 9 figures, accepted by PLoS On
Maintenance N-acetyl cysteine treatment for bipolar disorder : a double-blind randomised placebo controlled trial
Background N-acetyl cysteine (NAC) is a glutathione precursor that has been shown to have antidepressant efficacy in a placebo-controlled trial. The current study aimed to investigate the maintenance effects of NAC following eight weeks of open-label treatment for bipolar disorder.Method The efficacy of a double blind randomized placebo controlled trial of 2 g/day NAC as adjunct maintenance treatment for bipolar disorder was examined. Participants (n = 149) had a Montgomery Asberg Depression Rating Score of [greater than or equal to]12 at trial entry and, after eight weeks of open-label NAC treatment, were randomized to adjunctive NAC or placebo, in addition to treatment as usual. Participants (primarily outpatients) were recruited through public and private services and through newspaper advertisements. Time to intervention for a mood episode was the primary endpoint of the study, and changes in mood symptoms, functionality and quality of life measures were secondary outcomes.Results There was a substantial decrease in symptoms during the eight-week open-label NAC treatment phase. During the subsequent double-blind phase, there was minimal further change in outcome measures with scores remaining low. Consequently, from this low plateau, between-group differences did not emerge on recurrence, clinical functioning or quality of life measures.Conclusions There were no significant between-group differences in recurrence or symptomatic outcomes during the maintenance phase of the trial; however, these findings may be confounded by limitations. Trial Registration The trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12607000074493)
- …