77 research outputs found
Sandbox university: Estimating influence of institutional action
The approach presented in this article represents a generalizable and adaptable methodology for identifying complex interactions in educational systems and for investigating how manipulation of these systems may affect educational outcomes of interest. Multilayer Minimum Spanning Tree and Monte-Carlo methods are used. A virtual Sandbox University is created in order to facilitate effective identification of successful and stable initiatives within higher education, which can affect students' credits and student retention - something that has been lacking up until now. The results highlight the importance of teacher feedback and teacher-student rapport, which is congruent with current educational findings, illustrating the methodology's potential to provide a new basis for further empirical studies of issues in higher education from a complex systems perspective
Right Atrial Pressure Affects the Interaction between Lung Mechanics and Right Ventricular Function in Spontaneously Breathing COPD Patients
INTRODUCTION: It is generally known that positive pressure ventilation is associated with impaired venous return and decreased right ventricular output, in particular in patients with a low right atrial pressure and relative hypovolaemia. Altered lung mechanics have been suggested to impair right ventricular output in COPD, but this relation has never been firmly established in spontaneously breathing patients at rest or during exercise, nor has it been determined whether these cardiopulmonary interactions are influenced by right atrial pressure. METHODS: Twenty-one patients with COPD underwent simultaneous measurements of intrathoracic, right atrial and pulmonary artery pressures during spontaneous breathing at rest and during exercise. Intrathoracic pressure and right atrial pressure were used to calculate right atrial filling pressure. Dynamic changes in pulmonary artery pulse pressure during expiration were examined to evaluate changes in right ventricular output. RESULTS: Pulmonary artery pulse pressure decreased up to 40% during expiration reflecting a decrease in stroke volume. The decline in pulse pressure was most prominent in patients with a low right atrial filling pressure. During exercise, a similar decline in pulmonary artery pressure was observed. This could be explained by similar increases in intrathoracic pressure and right atrial pressure during exercise, resulting in an unchanged right atrial filling pressure. CONCLUSIONS: We show that in spontaneously breathing COPD patients the pulmonary artery pulse pressure decreases during expiration and that the magnitude of the decline in pulmonary artery pulse pressure is not just a function of intrathoracic pressure, but also depends on right atrial pressure
British randomised controlled trial of AV and VV optimization ("BRAVO") study:rationale, design, and endpoints
Background Echocardiographic optimization of pacemaker settings is the current standard of care for patients treated with cardiac resynchronization therapy. However, the process requires considerable time of expert staff. The BRAVO study is a non-inferiority trial comparing echocardiographic optimization of atrioventricular (AV) and interventricular (VV) delay with an alternative method using non-invasive blood pressure monitoring that can be automated to consume less staff resources. Methods/Design BRAVO is a multi-centre, randomized, cross-over, non-inferiority trial of 400 patients with a previously implanted cardiac resynchronization device. Patients are randomly allocated to six months in each arm. In the echocardiographic arm, AV delay is optimized using the iterative method and VV delay by maximizing LVOT VTI. In the haemodynamic arm AV and VV delay are optimized using non-invasive blood pressure measured using finger photoplethysmography. At the end of each six month arm, patients undergo the primary outcome measure of objective exercise capacity, quantified as peak oxygen uptake (VO2) on a cardiopulmonary exercise test. Secondary outcome measures are echocardiographic measurement of left ventricular remodelling, quality of life score and N-terminal pro B-type Natriuretic Peptide (NT-pro BNP). The study is scheduled to complete recruitment in December 2013 and to complete follow up in December 2014. Discussion If exercise capacity is non-inferior with haemodynamic optimization compared with echocardiographic optimization, it would be proof of concept that haemodynamic optimization is an acceptable alternative which has the potential to be more easily implemented
Single-layer graphene modulates neuronal communication and augments membrane ion currents
The use of graphenebased materials to engineer sophisticated biosensing interfaces that can adapt to the central nervous system requires a detailed understanding of how such materials behave in a biological context. Graphene's peculiar properties can cause various cellular changes, but the underlying mechanisms remain unclear. Here, we show that singlelayer graphene increases neuronal firing by altering membraneassociated functions in cultured cells. Graphene tunes the distribution of extracellular ions at the interface with neurons, a key regulator of neuronal excitability. The resulting biophysical changes in the membrane include stronger potassium ion currents, with a shift in the fraction of neuronal firing phenotypes from adapting to tonically firing. By using experimental and theoretical approaches, we
hypothesize that the graphene\u2013ion interactions that are maximized when singlelayer graphene is deposited on electrically insulating substrates are crucial to these effects
Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments
Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed
Searching for the origins of bere barley: a geometric morphometric approach to cereal landrace recognition in archaeology
Bere is a landrace of barley, adapted to the marginal conditions of northern Scotland, especially those of the Northern and Western Isles. The history of bere on these islands is long and, in an era of diminishing landrace cultivation, bere now represents one of the oldest cereal landraces in Europe still grown commercially. The longevity of bere raises the possibility of using grain characteristics of present-day specimens to identify bere in the archaeological record. Geometric modern morphometric (GMM) analysis of grains from bere and other barley landraces is conducted to determine whether landraces can be differentiated on grain morphology. Results indicate that there are morphological differences between bere and other British and Scandinavian landraces, and between bere from Orkney and the Western Isles, both of which are apparent in genetic analysis. This finding paves the way for the identification of bere archaeologically, helping to establish its status as living heritage and securing its commercial future. More broadly, this work indicates the potential of grain GMM for the recognition of cereal landraces, permitting the ancestry and exchange of landraces to be traced in the archaeological record
After the harvest: investigating the role of food processing in past human societies
Plant processing provides an essential framework for archaeobotanical interpretation since practices of processing lie between the ancient acquisition of plants and the preserved remains of archaeology. Crop-processing stages have received much attention as they contribute towards the interpretation of plants recovered from archaeological sites, linking them to routine human activities that generated these plant remains. Yet, there are many other important aspects of the human past that can be explored through food processing studies that are much less often investigated, e.g. how culinary practices may have influenced resource selection, plant domestication and human diet, health, evolution and cultural identity. Therefore, this special issue of AAS on “Food Processing Studies in Archaeobotany and Ethnobotany” brings together recent pioneering methodological and interpretive archaeobotanical approaches to the study of ancient food processing. This new research, which involves archaeobotany, ethnoarchaeology, ethnobotany and experimental methods, encompasses investigations into dietary choice, cultural traditions and cultural change as well as studies of the functional properties (i.e. performance characteristics) of edible plants, and the visibility as well as dietary benefits and consequences of different food processing methods.Fil: Capparelli, Aylen. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Arqueología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Valamoti, Soultana Maria. Aristotle University of Thessaloniki; GreciaFil: Wollstonecroft, Michèle M.. No especifíca
Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood
Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH
- …