8 research outputs found

    Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

    Full text link
    The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed. © 2018, The Ecological Society of Japan

    Using AFLP genome scanning to explore serpentine adaptation and nickel hyperaccumulation in Alyssum serpyllifolium

    No full text
    Background and aims Alyssum section Odontarrhena is the largest single clade of Ni-hyperaccumulator plants, most of which are endemic to ultramafic (serpentine) soils. Alyssum serpyllifolium is a facultative hyperaccumulator able to grow both on limestone-derived and ultramafic soils. Analysis of different populations of this species with contrasting phenotypes could allow the identification of genes involved in Ni-hyperaccumulation and serpentine tolerance.Methods A glasshouse pot experiment on compost-amended ultramafic soil was carried out with three ultramafic (U) and two non-ultramafic (NU) populations of A. serpyllifolium. The leaf ionome was determined by elemental analysis and used as a proxy for serpentine adaptation. A Ni-hyperaccumulating phenotype was estimated from leaf Ni concentrations. Cultured plants were genotyped using Amplified Fragment Length Polymorphism (AFLP) markers. Outlier analysis and regressions of leaf ionome over band distribution were applied to detect markers potentially involved in Ni-hyperaccumulation and serpentine tolerance.Results As well as U populations, some plants from NU populations were found to be able to hyperaccumulate Ni in leaves to concentrations exceeding 0.1% (w/w). U populations had a higher Ca/Mg leaf ratio than NU populations, mainly due to Mg exclusion. 374 AFLP markers were amplified and a potential adaptive value was identified in 34 of those markers.Conclusions Phenotype regression analyses were found to be more powerful than outlier analyses and indicated that regulation of foliar concentrations of Ni, Ca, Mg and P are the main factors involved in serpentine adaptation. More research is needed in order to resolve the ancestral or recently -evolved nature of Ni-hyperaccumulation.Strategic metal resources of the 21st centuryAgreenSkills

    Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

    No full text

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p
    corecore