479 research outputs found

    Balanced electric-magnetic dihole in Kaluza-Klein theory

    Full text link
    We present a four-dimensional double-black-hole (or dihole) solution in Kaluza-Klein theory, describing a superposition of an electrically charged and a magnetically charged black hole. This system can be balanced for appropriately chosen parameters, and the resulting space-time is completely regular on and outside the event horizons. This solution was constructed using the inverse-scattering method in five-dimensional vacuum gravity, in which it describes a rotating black ring surrounding a static black hole on a Taub-NUT background space. Various properties of this solution are studied, from both a four- and five-dimensional perspective.Comment: 33 pages, 6 figures; v2: expanded discussion of phase space, published versio

    String Theory on Warped AdS_3 and Virasoro Resonances

    Get PDF
    We investigate aspects of holographic duals to time-like warped AdS_3 space-times--which include G\"odel's universe--in string theory. Using worldsheet techniques similar to those that have been applied to AdS_3 backgrounds, we are able to identify space-time symmetry algebras that act on the dual boundary theory. In particular, we always find at least one Virasoro algebra with computable central charge. Interestingly, there exists a dense set of points in the moduli space of these models in which there is actually a second commuting Virasoro algebra, typically with different central charge than the first. We analyze the supersymmetry of the backgrounds, finding related enhancements, and comment on possible interpretations of these results. We also perform an asymptotic symmetry analysis at the level of supergravity, providing additional support for the worldsheet analysis.Comment: 24 pages + appendice

    Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincare symmetry

    Full text link
    We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schroedinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with m^2>0, in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to compute the corrections to Newton's law in the thin brane limit. In the first case we consider a solution with a mass gap in the spectrum of KK fluctuations with two bound states - the massless 4D graviton free of tachyonic instabilities and a massive KK excitation - as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the (thin) Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved as in the Lykken-Randall model and the model is completely free of naked singularities.Comment: 25 pages in latex, no figures, content changed, corrections to Newton's law included for smooth version of RS model and an author adde

    Unsuspected pulmonary alveolar proteinosis in a patient with acquired immunodeficiency syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Diffuse lung infiltrates are a common finding in patients with acquired immunodeficiency syndrome and causes range from infectious processes to malignancies or interstitial lung diseases. Pulmonary alveolar proteinosis is a rare pulmonary disorder rarely reported in patients infected with human immunodeficiency virus. Secondary pulmonary alveolar proteinosis is associated with conditions involving functional impairment or reduced numbers of alveolar macrophages. It can be caused by hematologic malignancies, inhalation of toxic dust, fumes or gases, infectious or pharmacologic immunosuppression, or lysinuric protein intolerance.</p> <p>Case presentation</p> <p>A 42-year-old African American man infected with human immunodeficiency virus was admitted with chronic respiratory symptoms and diffuse pulmonary infiltrates. Chest computed tomography revealed bilateral spontaneous pneumothoraces, for which he required bilateral chest tubes. Initial laboratory investigations did not reveal any contributory conditions. Histological examination of a lung biopsy taken during video-assisted thoracoscopy showed pulmonary alveolar proteinosis concurrent with cytomegalovirus pneumonitis. After ganciclovir treatment, our patient showed radiologic and clinical improvement.</p> <p>Conclusion</p> <p>The differential diagnosis for patients with immunosuppression and lung infiltrates requires extensive investigations. As pulmonary alveolar proteinosis is rare, the diagnosis can be easily missed. Our case highlights the importance of invasive investigations and histology in the management of patients infected with human immunodeficiency virus and pulmonary disease who do not respond to empiric therapy.</p

    Supergravity Solutions from Floating Branes

    Get PDF
    We solve the equations of motion of five-dimensional ungauged supergravity coupled to three U(1) gauge fields using a floating-brane Ansatz in which the electric potentials are directly related to the gravitational warp factors. We find a new class of non-BPS solutions, that can be obtained linearly starting from an Euclidean four-dimensional Einstein-Maxwell base. This class - the largest known so far - reduces to the BPS and almost-BPS solutions in certain limits. We solve the equations explicitly when the base space is given by the Israel-Wilson metric, and obtain solutions describing non-BPS D6 and anti-D6 branes kept in equilibrium by flux. We also examine the action of spectral flow on solutions with an Israel-Wilson base and show that it relates these solutions to almost-BPS solutions with a Gibbons-Hawking base.Comment: 24 pages, 1 figur

    Voluntary exercise can strengthen the circadian system in aged mice

    Get PDF
    Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and &gt;18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (&gt;21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption

    MRI of the kidney—state of the art

    Get PDF
    Ultrasound and computed tomography (CT) are modalities of first choice in renal imaging. Until now, magnetic resonance imaging (MRI) has mainly been used as a problem-solving technique. MRI has the advantage of superior soft-tissue contrast, which provides a powerful tool in the detection and characterization of renal lesions. The MRI features of common and less common renal lesions are discussed as well as the evaluation of the spread of malignant lesions and preoperative assessment. MR urography technique and applications are discussed as well as the role of MRI in the evaluation of potential kidney donors. Furthermore the advances in functional MRI of the kidney are highlighted

    Differences between patients' and clinicians' report of sleep disturbance: a field study in mental health care in Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of the study was to assess the prevalence of diagnosed insomnia and the agreement between patient- and clinician-reported sleep disturbance and use of prescribed hypnotic medication in patients in treatment for mental disorders.</p> <p>Methods</p> <p>We used three cross-sectional, multicenter data-sets from 2002, 2005, and 2008. Data-set 1 included diagnostic codes from 93% of all patients receiving treatment in mental health care in Norway (<it>N </it>= 40261). Data-sets 2 (<it>N </it>= 1065) and 3 (<it>N </it>= 1181) included diagnostic codes, patient- and clinician-reported sleep disturbance, and use of prescribed hypnotic medication from patients in 8 mental health care centers covering 10% of the Norwegian population.</p> <p>Results</p> <p>34 patients in data-set 1 and none in data-sets 2 and 3 had a diagnosis of insomnia as a primary or comorbid diagnosis. In data-sets 2 and 3, 42% and 40% of the patients reported sleep disturbance, whereas 24% and 13% had clinician-reported sleep disturbance, and 7% and 9% used hypnotics. Patients and clinicians agreed in 29% and 15% of the cases where the patient or the clinician or both had reported sleep disturbance. Positive predictive value (PPV) of clinicians' evaluations of patient sleep disturbance was 62% and 53%. When the patient reported sleep disturbance as one of their most prominent problems PPV was 36% and 37%. Of the patients who received hypnotic medication, 23% and 29% had neither patient nor clinician-rated sleep disturbance.</p> <p>Conclusion</p> <p>When patients meet the criteria for a mental disorder, insomnia is almost never diagnosed, and sleep disturbance is imprecisely recognized relative to the patients' experience of sleep disturbance.</p

    Search for gamma-ray emission from magnetars with the Fermi Large Area Telescope

    Full text link
    We report on the search for 0.1-10 GeV emission from magnetars in 17 months of Fermi Large Area Telescope (LAT) observations. No significant evidence for gamma-ray emission from any of the currently-known magnetars is found. The most stringent upper limits to date on their persistent emission in the Fermi-LAT energy range are estimated between ~10^{-12}-10^{-10} erg/s/cm2, depending on the source. We also searched for gamma-ray pulsations and possible outbursts, also with no significant detection. The upper limits derived support the presence of a cut-off at an energy below a few MeV in the persistent emission of magnetars. They also show the likely need for a revision of current models of outer gap emission from strongly magnetized pulsars, which, in some realizations, predict detectable GeV emission from magnetars at flux levels exceeding the upper limits identified here using the Fermi-LAT observations.Comment: ApJ Letters in press; Corresponding authors: Caliandro G. A., Hadasch D., Rea N., Burnett

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32
    corecore