79 research outputs found

    Spectral action, Weyl anomaly and the Higgs-Dilaton potential

    Full text link
    We show how the bosonic spectral action emerges from the fermionic action by the renormalization group flow in the presence of a dilaton and the Weyl anomaly. The induced action comes out to be basically the Chamseddine-Connes spectral action introduced in the context of noncommutative geometry. The entire spectral action describes gauge and Higgs fields coupled with gravity. We then consider the effective potential and show, that it has the desired features of a broken and an unbroken phase, with the roll down.Comment: 23 pages, 4 figure

    Weinberg like sum rules revisited

    Get PDF
    The generalized Weinberg sum rules containing the difference of isovector vector and axial-vector spectral functions saturated by both finite and infinite number of narrow resonances are considered. We summarize the status of these sum rules and analyze their overall agreement with phenomenological Lagrangians, low-energy relations, parity doubling, hadron string models, and experimental data.Comment: 31 pages, noticed misprints are corrected, references are added, and other minor corrections are mad

    On the construction of non-Hermitian Hamiltonians with all-real spectra through supersymmetric algorithms

    Full text link
    The energy spectra of two different quantum systems are paired through supersymmetric algorithms. One of the systems is Hermitian and the other is characterized by a complex-valued potential, both of them with only real eigenvalues in their spectrum. The superpotential that links these systems is complex-valued, parameterized by the solutions of the Ermakov equation, and may be expressed either in nonlinear form or as the logarithmic derivative of a properly chosen complex-valued function. The non-Hermitian systems can be constructed to be either parity-time-symmetric or non-parity-time-symmetric.Comment: 9 pages, 2 figures (affiliation institution corrected

    Exactly solvable Wadati potentials in the PT-symmetric Gross-Pitaevskii equation

    Full text link
    This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: V=W2+iWxV=-W^2+iW_x. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified by equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.Comment: To appear in Proceedings of the 15 Conference on Pseudo-Hermitian Hamiltonians in Quantum Physics, May 18-23 2015, Palermo, Italy (Springer Proceedings in Physics, 2016

    Hadronic Contributions to the Muon Anomaly in the Constituent Chiral Quark Model

    Get PDF
    The hadronic contributions to the anomalous magnetic moment of the muon which are relevant for the confrontation between theory and experiment at the present level of accuracy, are evaluated within the same framework: the constituent chiral quark model. This includes the contributions from the dominant hadronic vacuum polarization as well as from the next--to--leading order hadronic vacuum polarization, the contributions from the hadronic light-by-light scattering, and the contributions from the electroweak hadronic ZγγZ\gamma\gamma vertex. They are all evaluated as a function of only one free parameter: the constituent quark mass. We also comment on the comparison between our results and other phenomenological evaluations.Comment: Several misprints corrected and a clarifying sentence added. Three figures superposed and two references added. Version to appear in JHE

    Holographic Hadrons in a Confining Finite Density Medium

    Full text link
    We study a sector of the hadron spectrum in the presence of finite baryon density. We use a non-supersymmetric gravity dual to a confining guage theory which exhibits a running dilaton. The interaction of mesons with the finite density medium is encoded in the dual theory by a force balancing between flavor D7-branes and a baryon vertex provided by a wrapped D5-brane. When the current quark mass m_q is sufficiently large, the meson mass reduces, exhibiting an interesting spectral flow as we increase the baryon density while it has a more complicated behaviour for very small m_q.Comment: 34 pages, 20 figures, errors for some figures are fixe

    Construction of non-PT-symmetric complex potentials with all-real spectra

    Full text link
    We review recent work on the generalization of PT symmetry. We show that, in addition to PT-symmetric complex potentials, there are also large classes of non-PT-symmetric complex potentials which also feature all-real spectra. In addition, some classes of these non-PT-symmetric potentials allow phase transitions which do or do not go through exceptional points. These non-PT-symmetric potentials are constructed by a variety of methods, such as the symmetry and supersymmetry methods and the soliton theory. A generalization of PT symmetry in multi-dimensions is also reviewed.Comment: 22 pages, 6 figure
    corecore