88 research outputs found

    Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal Nacellid limpets to climate change

    Get PDF
    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions

    Characterisation of the mantle transcriptome and biomineralisation genes in the blunt-gaper clam, Mya truncata

    Get PDF
    Members of the Myidae family are ecologically and economically important, but there is currently very little molecular data on these species. The present study sequenced and assembled the mantle transcriptome of Mya truncata from the North West coast of Scotland and identified candidate biomineralisation genes. RNA-Seq reads were assembled to create 20,106 contigs in a de novo transciptome, 18.81% of which were assigned putative functions using BLAST sequence similarity searching (cuttoff E-value 1E − 10). The most highly expressed genes were compared to the Antarctic clam (Laternula elliptica) and showed that many of the dominant biological functions (muscle contraction, energy production, biomineralisation) in the mantle were conserved. There were however, differences in the constitutive expression of heat shock proteins, which were possibly due to the M. truncata sampling location being at a relatively low latitude, and hence relatively warm, in terms of the global distribution of the species. Phylogenetic analyses of the Tyrosinase proteins from M. truncata showed a gene expansion which was absent in L. elliptica. The tissue distribution expression patterns of putative biomineralisation genes were investigated using quantitative PCR, all genes showed a mantle specific expression pattern supporting their hypothesised role in shell secretion. The present study provides some preliminary insights into how clams from different environments – temperate versus polar – build their shells. In addition, the transcriptome data provides a valuable resource for future comparative studies investigating biomineralisation

    Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin \u3cem\u3ePsammechinus miliaris\u3c/em\u3e

    Get PDF
    The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the “new” conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge

    Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics

    Get PDF
    Background The capacity of marine species to survive chronic heat stress underpins their ability to survive warming oceans as a result of climate change. In this study RNA-Seq and 2-DE proteomics were employed to decipher the molecular response of the sub-tidal bivalve Pecten maximus, to elevated temperatures. Results Individuals were maintained at three different temperatures (15, 21 and 25 °C) for 56 days, representing control conditions, maximum environmental temperature and extreme warming, with individuals sampled at seven time points. The scallops thrived at 21 °C, but suffered a reduction in condition at 25 °C. RNA-Seq analyses produced 26,064 assembled contigs, of which 531 were differentially expressed, with putative annotation assigned to 177 transcripts. The proteomic approach identified 24 differentially expressed proteins, with nine identified by mass spectrometry. Network analysis of these results indicated a pivotal role for GAPDH and AP-1 signalling pathways. Data also suggested a remodelling of the cell structure, as revealed by the differential expression of genes involved in the cytoskeleton and cell membrane and a reduction in DNA repair. They also indicated the diversion of energetic metabolism towards the mobilization of lipid energy reserves to fuel the increased metabolic rate at the higher temperature. Conclusions This work provides preliminary insights into the response of P. maximus to chronic heat stress and provides a basis for future studies examining the tipping points and energetic trade-offs of scallop culture in warming oceans

    Life in the intertidal: cellular responses, methylation and epigenetics

    Get PDF
    1.Phenotypic plasticity is essential for the persistence of organisms under changing environmental conditions but the control of the relevant cellular mechanisms including which genes are involved and the regulation of those genes remains unclear. One way to address this issue is to evaluate links between gene expression, methylation and phenotype using transplantation and common garden experiments within genetically homogeneous populations. 2.This approach was taken using the Antarctic limpet Nacella concinna. In this species, two distinct phenotypes are associated with the intertidal and subtidal zones. The in situ gene expression and methylation profiles of intertidal and subtidal cohorts were directly compared before and after reciprocal transplantation as well as after a common garden acclimation to aquarium conditions for 9 months. 3.Expression profiles showed significant modulation of cellular metabolism to habitat zone with the intertidal profile characterised by transcription modules for antioxidant production, DNA repair and the cytoskeleton reflecting the need to cope with continually fluctuating and stressful conditions including wave action, UV irradiation and desiccation. 4.Transplantation had an effect on gene expression. The subtidal animals transplanted to the intertidal zone modified their gene expression patterns towards that of an intertidal profile. In contrast, many of the antioxidant genes were still differentially expressed in the intertidal animals several weeks after transplantation into the relatively benign subtidal zone. 5.Furthermore, a core of genes involved in antioxidation was still preferentially expressed in intertidal animals at the end of the common garden experiment. Thus, acclimation in an aquarium tank for 9 months did not completely erase the intertidal gene expression profile. 6.Significant methylation differences were measured between intertidal and subtidal animals from the wild and after transplantation, which were reduced on common garden acclimation. This suggests that epigenetic factors play an important role in physiological flexibility associated with environmental niche

    Governing the anthropocene: agency, governance, knowledge

    Get PDF
    The growing body of literature on the idea of the Anthropocene has opened up serious questions that go to the heart of the social and human sciences. There has been as yet no satisfactory theoretical framework for the analysis of the Anthropocene debate in the social and human sciences. The notion of the Anthropocene is not only a condition in which humans have become geologic agents, thus signalling a temporal shift in Earth history: it can be seen as a new object of knowledge and an order of governance. A promising direction for theorizing in the social and human science is to approach the notion of the Anthropocene as exemplified in new knowledge practices that have implications for governance. It invokes new conceptions of time, agency, knowledge and governance. The Anthropocene has become a way in which the human world is re-imagined culturally and politically in terms of its relation with the Earth. It entails a cultural model, that is an interpretative category by which contemporary societies make sense of the world as embedded in the Earth, and articulate a new kind of historical self-understanding, by which an alternative order of governance is projected. This points in the direction of cosmopolitics – and thus of a ‘Cosmopolocene’ – rather than a geologization of the social or in the post-humanist philosophy, the end of the human condition as one marked by agency

    Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris

    Get PDF
    The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the “new” conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge

    Scale issues in soil moisture modelling: problems and prospects

    Get PDF
    Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing

    Get PDF
    Background Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour. Methods LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces). Findings 4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1–6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20–0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4–84.3). Interpretation Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission. Funding Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research
    • 

    corecore