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Members of the Myidae family are ecologically and economically important, but there is currently very little
molecular data on these species. The present study sequenced and assembled the mantle transcriptome ofMya
truncata from the North West coast of Scotland and identified candidate biomineralisation genes. RNA-Seq
reads were assembled to create 20,106 contigs in a de novo transciptome, 18.81% of which were assigned puta-
tive functions using BLAST sequence similarity searching (cuttoff E-value 1E−10). The most highly expressed
geneswere compared to theAntarctic clam (Laternula elliptica) and showed thatmany of thedominant biological
functions (muscle contraction, energy production, biomineralisation) in themantle were conserved. There were
however, differences in the constitutive expression of heat shock proteins, which were possibly due to the
M. truncata sampling location being at a relatively low latitude, and hence relatively warm, in terms of the global
distribution of the species. Phylogenetic analyses of the Tyrosinase proteins fromM. truncata showed a gene ex-
pansion whichwas absent in L. elliptica. The tissue distribution expression patterns of putative biomineralisation
genes were investigated using quantitative PCR, all genes showed a mantle specific expression pattern
supporting their hypothesised role in shell secretion. The present study provides some preliminary insights
into how clams from different environments – temperate versus polar – build their shells. In addition, the tran-
scriptome data provides a valuable resource for future comparative studies investigating biomineralisation.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Biomineralisation is an essential biological process for many living
organisms. From microalgae to shellfish, multiple taxa – in at least 30
phyla – secrete calcium carbonate crystals onto a protein matrix
(Addadi and Weiner, 1997). The Mollusca is one such phylum whose
success since the base of the Cambrian (545 million years ago) is partly
attributed to the possession of a hard shell (Jackson et al., 2010; Marie
et al., 2013; Vermeij, 2005). The mollusc shell has been the subject of
scientific interest for centuries and continues to be researched from in-
creasingly multi-disciplinary perspectives (Marin and Luquet, 2004;
Zhang et al., 2012). Shells contain approximately 95–99% calcium car-
bonate (CaCO3) and 1–5% organic matrix; the organic component is a
protein matrix which applies synergetic forces that either nucleate or
inhibit crystal growth (Marie et al., 2010; Meenakshi et al., 1971;
Weiner and Hood, 1975). The protein matrix is secreted by the mantle
and recently, particularly since the 'omics era began, much research
. This is an open access article under
has focussed on understanding the molecular mechanisms of shell
growth — specifically the genetic control of shell matrix protein secre-
tion (Clark et al., 2010; Werner et al., 2013; Zhang et al., 2012).

Mya truncata is a marine bivalve which is part of the Myidae family
of soft-shelled clams. These clams live buried in sediments, both inter-
tidally and subtidally, and are important in many ecosystem functions
such as long-term sediment stabilisation, bioturbation and bentho-
pelagic coupling (Queirós et al., 2013). Members of the Myidae family
are edible and important economically as a food source and others,
such as Mya arenaria are invasive (Powers et al., 2006; Sousa et al.,
2009). Large infaunal clam species are morphologically similar, and
often inhabit similar ecological niches. Clam species from different geo-
graphic and environmental locations can therefore provide valuable
models for comparing important biological processes over physical gra-
dients — such as temperature (Morley et al., 2007).

Despite being named “soft-shelled” clams, M. truncata have a hard
shell which is composed of four structurally distinct layers: (i) the
outer periostracum (approximately 3 μm and relatively thin); (ii) an
outer shell layer of aragonitic granular prisms; (iii) amiddle layer of ara-
gonitic crossed lamellar; and (iv) an aragonitic inner layer of complex
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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crossed lamellar (Fig. 1). In order to better understand the molecular
mechanisms which produce M. truncata's shell, transcriptomic se-
quence datawas generated andmined for biomineralisation candidates.

The objectives of the present studywere: 1.) Develop amolecular re-
source to aid the study of biomineralisation in M. truncata by sequenc-
ing, assembling and putatively annotating its mantle transcriptome.
2.) Identify and further characterise candidate biomineralisation genes
in the newly-assembled M. truncata mantle transcriptome. 3.) Further
characterise possible biomineralisation mechanisms in M. truncata by
preliminary comparison with another bivalve species living at lower
temperatures, the Antarctic clam, Laternula elliptica.

2. Method

2.1. M. truncata mantle transcriptome

2.1.1. Animal collection and RNA extraction
M. truncata (n=9,mean shell length=64.5mm)were collected by

the NERC Facility for Scientific Diving from Dunstaffnage Bay, North
West Scotland in August 2011. Mantle tissue was dissected from each
animal and RNA was extracted using TRI reagent (TRIsure) according
to manufacturer's instructions (Bioline, UK) and purified on columns
(Qiagen, UK).

2.1.2. Sequencing and bioinformatics
The total mantle RNA from nine individuals was pooled prior to se-

quencing. Pooled RNA was subject to 454 GS FLX Titanium sequencing
Fig. 1.Microstructural layers ofMya truncata shell observed by Scanning ElectronMicroscopy (S
and sputter coating (3 min, 2 angles; Emitech K550). Observations made using a JEOL JSM-82
nomenclature used as per Bieler et al. (2014). Scale bar on bottom left. A.) Periostracum, B.) o
and D.) inner aragonitic layer of complex crossed lamellar.
at Cambridge University Department of Biochemistry Sequencing
Centre.

454 reads were assembled into a de novo transcriptome with GS
Data Analysis Software (454.com/products/analysis-software/) on de-
fault genomic-style parameters, resulting in a total of 20,106 contigs
with an average read length of 675 bp. All contigs were compared to
the NCBI non-redundant (nr) database (downloaded for in-house use
January 2015) using the Basic Local Alignment Search Tool (BLAST) to
search for sequence similarity and putative gene annotation (Altschul
et al., 1990). The most highly expressed annotated contigs were identi-
fied to highlight dominant processes in the mantle at the transcript
level. The mantle transcriptomes of M. truncata and L. elliptica were
compared using tBLASTx with default parameters.

Putative biomineralisation genes were identified using keyword
searches for candidates which have previously been shown to be asso-
ciated with shell production and calcification (Table 1). In addition,
contigs whichwere present in themantle and shell proteomewith sim-
ilarity to biomineralisation domains (Arivalagan et al., 2016 — in this
issue) were also included.

2.2. Tyrosinase bivalve phylogeny

Fifteen of theM. truncatamantle contigs showed high sequence sim-
ilarity to Tyrosinase. To understand the evolution of Tyrosinase proteins
inM. truncata, phylogenetic analyseswere carried out. The fifteen Tyros-
inase transcripts were mapped to a reference Tyrosinase domain
(PF00264) and preliminarily aligned using Clustal-W with default pa-
rameters (Larkin et al., 2007). The alignment indicated thatmost contigs
EM). Shellswere fractured, ultrasonically cleaned (20min) and air-dried prior tomounting
0 SEM. Images courtesy of Elizabeth M. Harper, University of Cambridge. Microstructure
uter aragonitic granular prism shell layer, C.) middle aragonitic layer of crossed lamellar

http://454.com/products/analysis-oftware


Table 1
Candidate biomineralisation genes selected for tissue distribution analysis, putative annotations and primers used in Q-PCR. "top 50"=in the top 50 most highly expresssed, annotated
mantle transcripts, "shell"=present in the shell proteome, "mantle"=present in the mantle proteome, "both"=present in both the shell and mantle proteome.

Contig I.D. Sequence similarity (BLAST)/
domains (Conserved
Domain Database(CDD))

Putative function Forward and reverse primer
sequence (5′ → 3′)

Amplicon
size

Annealing
temperature (°C)

M. truncata 18s M. truncata 18s M. truncata 18s GCTCGTAGTTGGATCTCGGG
ATCAAGAGCACCAAGGGACG

102 62

Contig0211 (top 50) Tyrosinase Biomineralisation CCCGGGCCTTCTAAATGTGT
ACACAACCTTTGTTAACCGGC

103 64

Contig902 (shell) Tyrosinase Biomineralisation CACCCTAATGCGTCAATGGG
GACATGAAGGTACCGGGTCA

124 64

Contig629 (both) Pif Biomineralisation CAGTCAGTGTCTGCCAGGTA
ACTACATCCACCACAGAGCC

107 64

Contig178 (shell) Complement control protein domain Immune/biomineralisation CTTGCGATCCTGTTCCGAAG
TTGCAGGGtTTACACGTGTG

187 64

Contig16470 (both and top 50) Calponin Biomineralisation CGTACCCAGTCATACCCTTCT
GGCAAAGATATCAAAGCCGATG

106 64

Contig395 (mantle) Cartilage matrix-like protein/Von
Willebrand factor type A domain

Biomineralisation CCTCGTTCTTTGCCTCATCG
CAGGAATGTTAAGCTCGGCC

236 64

Contig1412 (both) Chitin-binding domain Biomineralisation TTTACTCCCGATGCCAGTGT
CTTCGTACCTCCGCAATTGG

222 64
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represented gene fragments that mapped to different, non-overlapping
regions. To provide the most accurate phylogenetic analysis, only those
fragments which overlapped were selected for further analysis. From
the initial alignment of fifteen contigs, five were identified as potential
paralogues, the remaining eight contigs could still be paralogues, but
could not be included in analysis.

The derived amino acid sequences of the five selected contigs were
added to a previously published bivalve Tyrosinase alignment (provid-
ed by Aguilera et al., 2014) and the phylogeny was determined using
the method of Aguilera et al. (2014). Briefly, alignments were created
using the MAFFT algorithm (Katoh et al., 2005), refined using the
RASCAL webserver (Thompson et al., 2003) and analysed with Gblocks
9.1b (Castresana, 2000) to select conserved regions. The final alignment
was used to run three phylogenetic models: Neighbor-Joining (NJ) re-
constructions were performed using MEGA 5.2.2 (Tamura et al., 2011),
Maximum-likelihood (ML) trees were constructed using RAxMLGUI v.
1.3 (Silvestro and Michalak, 2012) and Bayesian inferences (BIs) were
performed using MrBayes v. 3.2 (Ronquist et al., 2012). Data from the
three models were manually combined to produce a consensus tree
(Fig. 2).

2.3. Tissue distribution of candidate biomineralisation gene expression

2.3.1. Experimental design
Animals (same collection as Section 2.1, n= 5, mean shell length=

60 mm) were dissected into six different tissues: mantle, siphon, gill,
foot, digestive gland and gonad. Dissected tissue sampleswere snap fro-
zen in liquid nitrogen and stored at−80 °C prior to RNA extraction.

2.3.2. RNA extraction and quantitative-PCR
Total RNAwas extracted from each tissue of each animal on ice using

Tri-Reagent (Bioline, UK) according to manufacturer's instructions, and
purified using DNase and RNeasy columns (Qiagen, UK). All RNA sam-
ples were analysed for concentration and quality by spectrophotometer
(NanoDrop, ND-1000) and tape station analyses (Agilent 2200
TapeStation). All samples were diluted to 30 ng μl−1 total RNA, and
30 ngwas used to synthesize cDNA following themanufacturer's proto-
col (Qiagen, QuantiTect Reverse Transcription Kit). cDNA was stored at
−20 °C until gene expression analysis.

A total of seven candidate genes were selected for tissue distribution
gene expression analysis (Table 1). The Ribosomal 18s genewas selected
as a housekeeping reference as recommended by previous work on
M. truncata's sister species — Mya arenaria (Siah et al., 2008). Gene-
specific primers were designed for unique regions in each candidate
using NCBI/Primer-BLAST (Ye et al., 2012) to produce single amplicons
with a size of approximately 100–250 bp, an annealing temperature of
62–64 °C and aGC content between 55 and 60%. PCR ampliconswere se-
quenced to confirm identity.

For quantitative PCR (Q-PCR), lyophilised primers (Invitrogen) were
reconstituted to 100 μmol with RNase-free water and mixed with Bril-
liant II SYBR® Green (Agilent, UK) followingmanufacturer's guidelines.
Fluorescence was detected (Stratagene, Mx3000P) over 40 cycles with
cycling conditions of 95 °C for denaturing, primer-specific annealing
62–64 °C, and extension at 72 °C. All samples and standards were run
in triplicate and each plate included triplicate H2O and no template con-
trols. Standard curves of each gene were generated on each Q-PCR
plate using four point, 2-fold serial dilutions of cDNA (from pooled
cDNA). The efficiencies of the Q-PCR reactions were 90–110%, as de-
termined using the slope of the standard curve (Efficiency (%) =
[(10(slope / −1)) − 1]).

Quantification of gene expression was conducted using the compar-
ative CT method that normalises the gene expression of each sample in
relation to an internal housekeeping gene (Ribosomal 18s). Evaluation of
CT values for Ribosomal 18s across samples indicated itwas an appropri-
ate housekeeping gene, ie there was no significant difference in expres-
sion across the different tissue types. Normalized CT values were
obtained by subtracting the CT value of the internal housekeeping
gene from that of the candidate gene in the same sample (ΔCT). Differ-
ences between the averageΔCT andΔCT of each samplewere expressed
as ΔΔCT. The fold changes (2-ΔΔCT) of candidate gene expression were
compared across tissues.

2.3.3. Statistics
Data were non-normally distributed (due to the number of zeros or

very low values) and could not be transformed to reach normality.
Given the non-normal distribution and unbalanced design (mantle
n = 5, siphon n = 4, gill n = 5, foot n = 3, digestive gland n = 5,
gonad n = 5), data were compared using 95% confidence intervals
around the mean average fold change and compared to zero, ie if the
confidence interval overlapped with zero (indicating the fold change
was equal to zero) or not. For additional stringency, mantle gene ex-
pression data were tested against a set median of zero using the non-
parametric Wilcoxon Signed Rank Test.

3. Results

3.1. M. truncata mantle transcriptome

RNA-Seq reads from the mantle tissue of nine animals were assem-
bled to create 20,106 contigs in the final de novo transcriptome (reads



Fig. 2. Phylogenetic analysis of Tyrosinase proteins in shell-buildingmolluscs. A consensus midpoint-rooted tree based on Neighbor-Joining (NJ) topology. Only bootstrap support values
N50% and posterior probabilities N0.50, from three different phylogenetic models, are shown at the nodes as follows: NJ bootstrap support/Maximum Likelihood (ML) bootstrap support/
Bayesian Posterior Probabilities (BPP). A black dot at thenode representsNJ andMLbootstrap N90% and BPP N0.9. Tree labels and nomenclature are consistentwith Aguilera et al. (2014) in
order to provide an easy visual comparison between the two studies. See Supplementary Figs. 1, 2 and 3 for trees generated from each model.
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available from NCBI SRA accession number: SRP064949, assembled
contigs available at: http://bit.ly/1QcFiVH). 18.81% of contigs were
assigned putative functions using BLAST sequence similarity searching
(below an E-value of 1E−10).

The top 50 most highly expressed, annotated, transcripts included
many putatively involved in muscle contraction (40%) such as: Myosin,
Paramyosin, Tubulin, Tropomyosin and Actin. Energy productionwas also
a dominant process, with annotation in twelve transcripts (24%), eg
NADH dehydrogenase and Cytochrome c oxidase. Other notable tran-
scripts included three encoding putative biomineralisation genes –
Calponin-3, Calponin-2 and Tyrosinase; and two chaperone genes –
Heat shock protein 90-alpha 1 and Heat shock protein 70 (Table 2).

When the mantle transcriptomes of M. truncata and L. ellipticawere
compared using tBLASTx, 17.37% of theM. truncata contigs showed sim-
ilarity to an L. elliptica contig (below an E-value of 1E−10; Supplemen-
tary Table 1). The top 50 most similar contigs included one notable

http://bit.ly/1QcFiVH
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biomineralisation gene— Tyrosinase (Supplementary Table 2). All of the
candidate biomineralisation genes selected for Q-PCR also showed
strong sequence similarity (below an E-value of 1E−15) to a
L. elliptica contig (Supplementary Table 2).

3.2. Tyrosinase bivalve phylogeny

At least five putative Tyrosinase paralogues were identified in the
M. truncata mantle transcriptome. The derived amino acid sequences
were added to a previously published molluscan Tyrosinase phyloge-
netic analysis (Aguilera et al., 2014).Many of the nodes had low support
values (Fig. 2, Supplementary Figs. 1, 2 and 3), however some
reoccurring patterns were observed across the three phylogenetic
models used. Two major clades (A & B) were resolved (although it
should be noted that there is some confusion in the literature with
regards to nomenclature which we believe explains clade discrepan-
cies) in addition to two large, independent expansions in the taxa
Crassostrea and Pinctada. In general theM. truncata transcripts clustered
Table 2
The top 50 most highly expressed annotated contigs in theMya truncata mantle transcriptome

Contig ID Contig length No. of reads Description

2653 1206 5190 Paramyosin
270 2488 4806 Myosin heavy chain, striated muscle-like
9876 569 3952 Paramyosin
1535 1479 3676 Myosin heavy chain
14488 307 3308 Alpha-L1 nicotinic acetyl choline receptor
13639 350 3165 Actin
11333 482 2504 Paramyosin
8180 661 2106 Actin
12700 401 2079 Myosin, regulatory light chain
15612 255 1993 Myosin heavy chain, striated muscle-like
18456 149 1981 Actin subfamily protein
2367 1265 1673 Elongation factor 1 alpha
15826 245 1541 Transcript Antisense to Ribosomal RNA (Ta
433 2216 1533 NADH dehydrogenase subunit 2 (mitochon
16924 203 1424 Calponin-2
209 2646 1354 Protein disulfide-isomerase
619 1969 1341 Arginine kinase
12154 439 1280 Ribosomal protein rps12
190 2707 1243 Myosin heavy chain, striated muscle-like
19872 107 1227 Actin-4
3040 1140 1200 Myosin heavy chain
13067 381 1197 Transcript antisense to ribosomal RNA (Tar
4048 1004 1161 Myosin heavy chain, striated muscle
12702 401 1042 Ligand-gated ion channel 4-like
19227 124 1041 Myosin, regulatory light chain
187 2730 1030 Heat shock protein HSP 90-alpha 1
1953 1363 1002 Fructose-1, 6-bisphosphate aldolase
5581 846 993 60S ribosomal protein L4
15404 264 979 Cytochrome c oxidase subunit III (mitocho
17523 181 963 Cytochrome c oxidase subunit III (mitocho
16470 221 960 Calponin-3
5696 836 950 Cytochrome c oxidase subunit I (mitochon
15046 280 944 Myosin heavy chain
15886 243 943 Myosin, essential light chain
7264 717 919 Beta-actin
1680 1435 903 Tubulin alpha-1 chain
13124 378 870 Tropomyosin
495 2111 826 Polyadenylate-binding protein 4
11402 478 812 NADH dehydrogenase subunit 1 (mitochon
162 2807 787 Phosphoenolpyruvate carboxykinase [GTP]
4251 980 775 NADH dehydrogenase subunit 5 (mitochon
211 2639 771 Tyrosinase (tyr-3)
268 2492 741 Heat shock protein 70
7748 686 734 60S ribosomal protein
1122 1641 729 Voltage-dependent anion channel 2
10131 550 713 60S ribosomal protein L4
2645 1207 694 Receptor for activated protein kinase
10039 555 689 NADH dehydrogenase subunit 1 (mitochon
2970 1152 687 Cytochrome b (mitochondrion)
3020 1144 672 ADP,ATP carrier protein
in clade A. One of the M. truncata transcripts (contig00553) clustered
loosely with the TyrA3 genes from Crossostrea gigas and Pinctada fucata,
whilst all other copies clustered with the L. elliptica gene, TyrB, and
showed evidence of early expansion in the M. truncata genome.
3.3. Tissue distribution of biomineralisation gene expression

Seven candidate biomineralisation genes were identified for further
analysis based on sequence similarity to known biomineralisation
genes, some of which were also present in the top 50 most highly
expressed annotated transcripts (Table 2), the shell ormantle proteome
(Arivalagan et al., 2016— in this issue), or any combination of the three
(Table 1).

A mantle/siphon-specific signal was detected for all candidates (Fig.
3). None of the mantle 95% confidence intervals overlapped zero and a
non-parametricWilcoxon Signed Rank Test showed that all of theman-
tle gene expression values were above zero (P b 0.05). In contrast, all of
.

Species Common name E-value

Crassostrea gigas Pacific oyster 5.22E−111
Aplysia californica Californian sea hare 0
Mytilus galloprovincialis Mediterranean mussel 8.82E−034
Placopecten magellanicus Atlantic deep-sea scallop 5.00E−141
Brugia malayi Elephantiasis nematode 5.66E−015
Marsupenaeus japonicus Japanese tiger prawn 9.48E−055
Mytilus galloprovincialis Mediterranean mussel 7.35E−063
Drosophila persimilis Fruit fly 2.14E−071
Mercenaria mercenaria Hard-shell clam 1.66E−030
Aplysia californica Californian sea hare 9.36E−031
Acanthamoeba castellanii Soil amoebae 3.23E−013
Mytilus galloprovincialis Mediterranean mussel 0

r1p) Medicago truncatula Barrel clover 3.48E−017
drion) Mya arenaria Soft-shelled clam 7.77155E−94

Crassostrea gigas Pacific oyster 9.27E−013
Crassostrea gigas Pacific oyster 1.23E−173
Pholas orientalis Oriental angel wing 0
Eurythoe complanata Fire worm 1.81E−056
Aplysia californica Californian sea hare 0
Toxocara canis Dog roundworm 3.03E−011
Pecten maximus King scallop 2.55E−096

1p) Medicago truncatula Barrel clover 7.13255E−18
Crassostrea gigas Pacific oyster 1.09E−121
Aplysia californica Californian sea hare 6.99E−013
Macrocallista nimbosa Sunray venus clam 1.21E−012
Crassostrea gigas Pacific oyster 0
Meretrix meretrix Orient clam 1.19E−077
Crassostrea gigas Pacific oyster 3.00803E−129

ndrion) Mya arenaria Soft-shelled clam 1.14E−031
ndrion) Mya arenaria Soft-shelled clam 2.93134E−19

Pinctada fucata Pearl oyster 8.72E−013
drion) Mya arenaria Soft-shelled clam 1.93028e−120

Argopecten irradians Atlantic bay scallop 3.17082E−18
Mercenaria mercenaria Hard-shell clam 1.12192E−15
Meretrix meretrix Orient clam 7.06472E−133
Harpegnathos saltator Indian jumping ant 0
Tresus keenae Horse clam 5.07894E−48
Crassostrea gigas Pacific oyster 0

drion) Mya arenaria Soft-shelled clam 1.27497E−35
Crassostrea gigas Pacific oyster 0

drion) Mya arenaria Soft-shelled clam 9.23E−110
Crassostrea gigas Pacific oyster 4.33E−086
Corbicula fluminea Golden clam 0
Aplysia californica Californian sea hare 2.16E−088
Haliotis diversicolor Many-coloured abalone 1.26E−095
Crassostrea gigas Pacific oyster 6.82E−022
Scrobicularia plana Peppery furrow shell 1.44E−169

drion) Mya arenaria Soft-shelled clam 1.81E−033
Mya arenaria Soft-shelled clam 2.93E−140
Crassostrea gigas Pacific oyster 7.38E−136
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the remaining tissues tested (except siphon for 16470 and 395) were
equal to zero.

4. Discussion

4.1. M. truncata mantle transcriptome

Presented here is the first substantial molecular resource for
M. truncata, which is a valuable resource for biomineralisation and com-
parative studies. The M. truncata mantle transcriptome was similar in
size (~20,000 contigs), composition of most highly expressed tran-
scripts and percentage annotation to other previously characterised bi-
valve mantle transcriptomes (Clark et al., 2010; Freer et al., 2014;
Joubert et al., 2010; Niu et al., 2013; Shi et al., 2013); in particular it
shares some consistent features with that of the Antarctic clam
L. elliptica. When the M. truncata and L. elliptica mantle transcriptomes
were compared using tBlastx, 17.35% of contigs were shared (below
Fig. 3. Tissue distribution expression patterns of candidate biomineralisation genes determined
as 2-ΔΔCT using Ribosomal 18s as an internal housekeeping gene.
an E-value of 1E−10) representing a highly conserved core set of
genes (Clark et al., 2010; Sleight et al., 2015). Both the M. truncata and
L. ellipticamantle transcriptomeswere heavily dominated bymuscle re-
lated genes (Table 2;Myosin, Actin etc.), reflecting the contractile nature
of this organ. In addition, putative mitochondrial respiratory chain
genes (NADH dehygrogenase, Cytochrome c, Arginine kinase etc) were
highly expressed in both, demonstrating that the mantle is a metaboli-
cally and transcriptionally active tissue. To date, our research has con-
centrated on L. elliptica and M. truncata has been chosen as a northern
hemisphere, temperate comparison. M. truncata is often reported as
an Arctic bivalve (Camus et al., 2002; Gillis and Ballantyne, 1999), how-
ever animals in the present study were sampled from a more southerly
latitude, and hence much warmer region of their distribution on the
NorthWest coast of Scotland.M. truncata and L. elliptica are ecologically
andmorphologically very similar, but their physical environments (Arc-
tic to temperate versus Antarctic), geographical extent (ranging from
Arctic through subboreal to temperate versus Southern Ocean
via Q-PCR (mean average fold change± 95% confidence intervals). Fold change calculated
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exclusively) and evolutionary history (phylogenetically distant rela-
tives) differ significantly. In addition, the two species have different
shell microstructures. As a result of their independent evolutionary tra-
jectories in dissimilar physical conditions, with diverse selection pres-
sures, M. truncata which inhabit temperate regions have a higher
metabolic rate and shorter lifespan than L. elliptica (Camus et al., 2003,
2005; Peck et al., 2002; Philipp and Abele, 2010).

As well as sharing a core set of highly conserved genes, the
M. truncata and L. elliptica most highly expressed mantle transcripts
share more specific similarities at the individual gene level. Here we
will focus on the genes likely to be involved in biomineralisation. Both
transcriptomes have a single Tyrosinase gene in the most highly
expressed set of transcripts, L. elliptica has Tyrosinase B and M. truncata
has Tyrosinase A3. Tyrosinase is a biomineralisation protein involved in
the formation of the shell matrix and periostracum (Huning et al.,
2013; Sánchez-Ferrer et al., 1995; Zhang et al., 2006), its extreme high
expression in themantle organof both clamspecies provides further ev-
idence for its important role in shell deposition. A lesswell characterised
biomineralisation candidate is Calponin, both species have two Calponin
genes in the mostly highly expressed transcripts. Calponin proteins are
typically involved in muscle contraction and interact closely with other
muscle action proteins such as Actin andMyosin (Matthew et al., 2000).
Its role in muscle contraction however, is thought to be primarily cross-
linking and stabilisation of the muscle fibres (Jensen et al., 2014), and
we hypothesise it could play a similar role in the stabilisation of the
shell protein matrix. Several pieces of evidence support this idea: 1.) It
is highly expressed at the transcript level in the mantle of the two
clam species and a species of pearl oyster, Pinctada martensii (Shi
et al., 2013). 2.) It has been demonstrated to be involved in the
biomineralisation of bone in humans (Ueda et al., 2002). 3.) The shell
matrix protein, PFMG8, has been shown (in silico) to contain a Calponin
domainwhich has a calciumbinding site (Evans, 2012). 4.) It has aman-
tle specific expression pattern (Fig. 3) and finally, 5.) Calponin proteins
were found in both the shell andmantle proteome ofM. truncatawhere
it may interact with Myosin and contribute to shell elasticity
(Arivalagan et al., 2016 — in this issue).

One noticeable difference between the M. truncata and L. elliptica
mantle transcriptomes concerns the constitutive expression of heat
shock proteins (HSPs). HSPs are involved in protein-folding and
chaperoning and are either constitutively expressed, or induced in re-
sponse to stress (Hartl, 1996). Both Heat shock protein 70 (Hsp70) and
Heat shock protein 90-alpha (Hsp90) were highly expressed in the
M. truncatamantle, where as in L. elliptica there was no high expression
of any HSP family members (above 300 reads — which was the cut-off
used by Clark et al., 2010). Hsp70 is classically regarded as inducible,
rather than constitutive, and forms part of a classic “stress” response
inmany organisms (Clark et al., 2008; Clark and Peck, 2009). One possi-
ble explanation for the high background expression of inducible Hsp70
in M. truncata is that the animals in the present study were sampled
from a southerly latitude and warm region of their global distribution
(summer sea surface temperatures in Dunstaffnage Bay have been re-
corded N14 °C) where they are close to their upper thermal tolerance
(Amaro et al., 2005). Work by Amaro et al. (2005) demonstrated that
M. truncata at its southern distribution limit (the Frisian Front in the
North Sea experiencingwater temperatures N14 °C) have low numbers
of ripe oocytes and frequent years of poor recruitment, indicating the
southern populations could be in a constant state of low-level thermal
stress. Hsp90 on the other hand, is thought of as a constitutively
expressed protein, and its high expression in the M. truncata mantle
transcriptome is likely to represent normal cellular processes in the
mantle, similar to other invertebrate species (Huang et al., 2013).

4.2. Tyrosinase bivalve phylogeny

Tyrosinase is a multifunctional well-characterised, shell-associated
protein which has been shown to have a functional role in the cross-
linking of the soluble periostracum precursor (the periostracin) to
form an insoluble periostracum (Waite et al., 1979); to be localised in
the prismatic layer of shell (Nagai et al., 2007) and to be expressed in
the pallial mantle and hence involved in the nacreous layer of the
shell (Takgi and Miyashita, 2014). In addition, Tyrosinase is involved
in numerous other biological processes such as innate immunity, pig-
mentation and wound healing (Aguilera et al., 2014; Zhang et al.,
2006). We have identified at least five gene copies of Tyrosinase in the
M. truncata mantle transcriptome which are likely to be a result of sev-
eral gene duplication events followed by sub-functionalisation (Force
et al., 1999). It is possible that an expansion and subsequent sub-
functionalisation has produced Tyrosinase paralogues which have
completely new functions besides shell formation, for example in the
immune system, as suggested by Wang et al. (2009) and Esposito
et al. (2012). Given thewell-characterised and clearly important nature
of Tyrosinase inmolluscan shell formation, it is important to investigate
its evolution in order to better understand how mollusc shell is pro-
duced between species. M. truncata Tyrosinase amino acid sequences
were therefore investigated within a phylogenetic context. Similar to
Aguilera et al. (2014) and other previous Tyrosinase phylogenies
(Aguilera et al., 2013), many of the nodes had low support values (Fig.
2, Supplementary Figs. 1, 2 and 3). Adding M. truncata sequence data
to three independent phylogenetic analyses did not alter the overall
tree topology and the major patterns described by Aguilera and col-
leagues were largely still resolved — further validating their work.

Four of the fiveM. truncata Tyrosinase amino acid sequences formed
a well-supported cluster with L. elliptica Tyrosinase B. It is possible this
cluster represents an expansion within the M. truncata genome. The
fifth M. truncata sequence grouped with Tyrosinase A3 sequences
from C. gigas and P. fucata. Given that one of the L. elliptica sequences
group with the M. truncata sequences it is likely they have evolved
under at least some similar selection pressures with regard to shell
growth. M. truncata however, show evidence for a Tyrosinase expan-
sion, which is absent in L. elliptica. Antarctic marine invertebrates are
largely stenothermal due to evolution at constant cold temperatures
for long periods of geological time (Rogers, 2007). We find that, for
the Tyrosinase gene family, Antarctic clams are less diverse than their
temperate counterparts M. truncata, and other marine shelled-
molluscs. An explanation for higher Tyrosinase diversity in M. truncata
than L. elliptica could be due to M. truncata's wider geographical dis-
tribution and spread over environmental gradients. As a species,
M. truncata could require more diverse molecular machinery to cope
with the diverse environments they inhabit; supporting the hypothesis
that diversity is positively correlated to environmental heterogeneity
and stress (Nevo, 2001; Van Valen, 1965).

4.3. Tissue distribution of biomineralisation gene expression

As expected, all of the putative biomineralisation candidate genes
we selected for tissue distribution analysis (Table 1) showed a mantle/
siphon-specific expression pattern (Fig. 3). Tyrosinase and Pif are well
characterised shell proteins (Nagai et al., 2007; Suzuki et al., 2009);
they have recently been shown to respond to shell damage in
L. elliptica (Sleight et al., 2015), and the mantle/siphon specific expres-
sion patterns found in M. truncata provide further evidence to support
their hypothesised functional role in shell deposition in the two clam
species. Calponin is likely to be involved in biomineralisation (as
discussed at length in Section 4.1) however, like many biominerali-
sation proteins, it is multi-functional and also involved in muscle con-
traction where it interacts with Myosin and hence it also showed
variable expression in the foot (a muscle). Cartilage matrix proteins
are involved in calcium phosphate biomineralisation in vertebrates
where they bind to calcium phosphate crystals and form part of an ex-
tracellular matrix (Acharya et al., 2014). Arivalagan et al. (2016 — in
this issue) identified Cartilage matrix protein in the M. truncata shell
proteome, and taken together with themantle-specific gene expression
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pattern found in the present study, it is likely to play a similar matrix-
like role in mollusc biomineralisation. Chitinase is an enzyme
hypothesised to be involved in mollusc shell matrix construction
(Sleight et al., 2015), as well as immunity (Badariotti et al., 2007). The
function of Chitinase and Chitinase-like proteins have been investigated
in arthropods with chitinous exoskeletons; they are typically involved
in moult-cycles, wound healing and tissue repair (Bonneh-Barkay
et al., 2010; Chen et al., 2004), however their exact function in themol-
lusc shell matrix is still unclear. Previous work shows Chitinase expres-
sion is up regulated in response to injury after 21 days in young, but not
old, L. elliptica (Husmann et al., 2014); and Sleight et al. (2015) also
found variable expression in L. elliptica over time in response to shell
damage. Very high expression was found in young damaged animals
after oneweek, whereas no expression was detected in control or dam-
aged adult animals. The mantle specific expression pattern found in the
present study, as well as Chitinase presence in theM. truncata shell pro-
teome (Arivalagan et al., 2016— in this issue), provides further support
for its active involvement in shell deposition. More research is required
to understand its hugely variable expression in young versus old ani-
mals and its exact function duringmatrix formation and shell secretion.

Complement control proteins are multifunctional and involved
in both the immune system (Ferreira et al., 2010) and possibly
biomineralisation (Arivalagan et al., 2016 — in this issue). Bivalve shell
and mantle combined act as a barrier to the external environment,
and as such are likely to be entwined with immune processes. Dis-
entangling immune and biomineralisation mechanisms represents a
significant challenge for researchers trying to understand howmolluscs
build their shells. The challenge is partly due to the dual role of
haemocytes both as immune cells and hypothesised calcium carbonate
chaperones (Mount et al., 2004). In addition to the observed mantle
specific expression of Complement control protein in the present study
and previous reports of immune genes such as Mytilin responding to
damage in L. elliptica (Sleight et al., 2015), Arivalagan et al. (2016 — in
this issue) found immune proteins in the M. truncata shell proteome
(and verified their presencewas not due to contamination). The expres-
sion of immune genes in theM. truncatamantle, as well as the immune
proteins found in its shell, could be explained in several ways: 1.) gen-
eral haemocyte circulation in themantle could result in coincidental in-
corporation into the shell as an accidental bi-product of their immune
function (as per the mantle's role as a barrier); 2.) whilst haemocytes
actively deposit calcium carbonate to the shell secretion site they
could be coincidentally trapped in the shell matrix space, as an acciden-
tal bi-product of their role in biomineralisation, as proposed by
Arivalagan et al. (2016 — in this issue); or 3.) immune proteins could
serve a genuine dual-functional role, both in aiding biomineralisaion
during calcium carbonate secretion from haemocytes, and possibly
also at a structural matrix-level, as well as fighting infection as an
anti-microbial peptide in the shell, and in the circulating haemocytes
in the mantle.

5. Conclusion

We present the first substantial molecular resource for M. truncata.
The mantle transcriptome was 454-sequenced, de novo-assembled
and BLAST sequence similarity-annotated to produce a total of 20,106
contigs, of which approximately 19% were assigned putative functions.
The mantle transcriptomes of M. truncata and the Antarctic clam
(L. elliptica) were compared using tBLASTx and overall, shared a core
complement (17%) of highly conserved transcripts. Looking at the
most highly expressed genes in the two species showed that many of
the dominant biological functions (contraction, energy production,
biomineralisation) were conserved. The Tyrosinase proteins from
M. truncatawere analysed phylogenetically and showed a small expan-
sion which was closely related to L. elliptica, however M. truncata had
more diversity in Tyrosinase proteins. The tissue distribution expression
pattern of candidate biomineralisation genes was investigated using Q-
PCR, all genes showed a mantle specific expression pattern supporting
their hypothesised role in shell secretion. We provide very preliminary
insights on how clams in different conditions (temperate versus polar)
build their shells — a topic which we will continue to pursue in our
research group. In addition, we provide a valuable molecular resource
for future comparative studies investigating biomineralisation.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.margen.2016.01.003.
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