183 research outputs found
Center of mass integral in canonical general relativity
For a two-surface B tending to an infinite--radius round sphere at spatial
infinity, we consider the Brown--York boundary integral H_B belonging to the
energy sector of the gravitational Hamiltonian. Assuming that the lapse
function behaves as N \sim 1 in the limit, we find agreement between H_B and
the total Arnowitt--Deser--Misner energy, an agreement first noted by Braden,
Brown, Whiting, and York. However, we argue that the Arnowitt--Deser--Misner
mass--aspect differs from a gauge invariant mass--aspect by a pure divergence
on the unit sphere. We also examine the boundary integral H_B corresponding to
the Hamiltonian generator of an asymptotic boost, in which case the lapse N
\sim x^k grows like one of the asymptotically Cartesian coordinate functions.
Such an integral defines the kth component of the center of mass for a Cauchy
surface \Sigma bounded by B. In the large--radius limit, we find agreement
between H_B and an integral introduced by Beig and O'Murchadha. Although both
H_B and the Beig--O'Murchadha integral are naively divergent, they are in fact
finite modulo the Hamiltonian constraint. Furthermore, we examine the
relationship between H_B and a certain two--surface integral linear in the
spacetime Riemann curvature tensor. Similar integrals featuring the curvature
appear in works by Ashtekar and Hansen, Penrose, Goldberg, and Hayward. Within
the canonical 3+1 formalism, we define gravitational energy and
center--of--mass as certain moments of Riemann curvature.Comment: 52 pages, revtex4, uses amsmath and amssym
Perturbed angular correlations for Gd in gadolinium: in-beam comparisons of relative magnetizations
Perturbed angular correlations were measured for Gd ions implanted into
gadolinium foils following Coulomb excitation with 40 MeV O-16 beams. A
technique for measuring the relative magnetizations of ferromagnetic gadolinium
hosts under in-beam conditions is described and discussed. The combined
electric-quadrupole and magnetic-dipole interaction is evaluated. The effect of
nuclei implanted onto damaged or non-substitutional sites is assessed, as is
the effect of misalignment between the internal hyperfine field and the
external polarizing field. Thermal effects due to beam heating are discussed.Comment: 37 pages, 15 figures, accepted for publication in NIM
Measurements of the Ratios and
Using the CLEO~II detector we measure , and .
We find the vector to pseudoscalar ratio, , which is similar to the
ratio found in non strange decays.Comment: 11 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model
We revisit the scaling behavior of the specific heat of the three-dimensional
random-field Ising model with a Gaussian distribution of the disorder. Exact ground states
of the model are obtained using graph-theoretical algorithms for different strengths
= 268 3Â spins. By numerically differentiating the bond energy
with respect to h, a specific-heat-like quantity is obtained whose
maximum is found to converge to a constant in the thermodynamic limit. Compared to a
previous study following the same approach, we have studied here much larger system sizes
with an increased statistical accuracy. We discuss the relevance of our results under the
prism of a modified Rushbrooke inequality for the case of a saturating specific heat.
Finally, as a byproduct of our analysis, we provide high-accuracy estimates of the
critical field hc =
2.279(7) and the critical exponent of the correlation exponent
Μ =
1.37(1), in excellent agreement to the most recent computations in the
literature
Critical aspects of the random-field Ising model
We investigate the critical behavior of the three-dimensional random-field Ising model
(RFIM) with a Gaussian field distribution at zero temperature. By implementing a
computational approach that maps the ground-state of the RFIM to the maximum-flow
optimization problem of a network, we simulate large ensembles of disorder realizations of
the model for a broad range of values of the disorder strength h and
system sizes  = L3, with L â€Â 156. Our averaging procedure
outcomes previous studies of the model, increasing the sampling of ground states by a
factor of 103. Using well-established finite-size scaling schemes, the
fourth-orderâs Binder cumulant, and the sample-to-sample fluctuations of various
thermodynamic quantities, we provide high-accuracy estimates for the critical field
hc, as well as the critical exponents Μ,
ÎČ/Îœ, and ÎłÌ
/Μ of the correlation length, order parameter, and
disconnected susceptibility, respectively. Moreover, using properly defined noise to
signal ratios, we depict the variation of the self-averaging property of the model, by
crossing the phase boundary into the ordered phase. Finally, we discuss the controversial
issue of the specific heat based on a scaling analysis of the bond energy, providing
evidence that its critical exponent α â 0â
Spin alignment of leading mesons in hadronic decays
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K â (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K â 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of â0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K â 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K â (892) 0 mesons per hadronic Z 0 decay
TRY plant trait database â enhanced coverage and open access
Plant traitsâthe morphological, anatomical, physiological, biochemical and phenological characteristics of plantsâdetermine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traitsâalmost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling
A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems
- âŠ