522 research outputs found
“Don’t let the trial kill the intervention”: How can researchers and care home teams implement complex intervention trials in care homes?
There is a need for a context-specific sustainable model for conduct of high-quality research in care homes Implementation of research interventions in care homes needs co-design, good relationships, understanding the context and funding A framework can provide the basis to build trust between researchers, care home residents, families and staff
Mass-Enhanced Fermi Liquid Ground State in NaCoO
Magnetic, transport, and specific heat measurements have been performed on
layered metallic oxide NaCoO as a function of temperature .
Below a characteristic temperature =3040 K, electrical resistivity
shows a metallic conductivity with a behavior and magnetic susceptibility
deviates from the Curie-Weiss behavior showing a broad peak at 14 K. The
electronic specific heat coefficient is 60 mJ/molK at 2 K.
No evidence for magnetic ordering is found. These behaviors suggest the
formation of mass-enhanced Fermi liquid ground state analogous to that in
-electron heavy fermion compound LiVO.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004
Bosonic Excitations in Random Media
We consider classical normal modes and non-interacting bosonic excitations in
disordered systems. We emphasise generic aspects of such problems and parallels
with disordered, non-interacting systems of fermions, and discuss in particular
the relevance for bosonic excitations of symmetry classes known in the
fermionic context. We also stress important differences between bosonic and
fermionic problems. One of these follows from the fact that ground state
stability of a system requires all bosonic excitation energy levels to be
positive, while stability in systems of non-interacting fermions is ensured by
the exclusion principle, whatever the single-particle energies. As a
consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the
excitation spectrum in conjunction with the problem of constructing a
disorder-dependent ground state: we show how a mapping to an operator with
chiral symmetry provides a useful tool for doing this. A second difference
involves the distinction for bosonic systems between excitations which are
Goldstone modes and those which are not. In the case of Goldstone modes we
review established results illustrating the fact that disorder decouples from
excitations in the low frequency limit, above a critical dimension , which
in different circumstances takes the values and . For bosonic
excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency as is a universal
feature in systems with ground states that depend on the disorder realisation.
We illustrate our conclusions with extensive analytical and some numerical
calculations for a variety of models in one dimension
Theory of spin-polarized bipolar transport in magnetic p-n junctions
The interplay between spin and charge transport in electrically and
magnetically inhomogeneous semiconductor systems is investigated theoretically.
In particular, the theory of spin-polarized bipolar transport in magnetic p-n
junctions is formulated, generalizing the classic Shockley model. The theory
assumes that in the depletion layer the nonequilibrium chemical potentials of
spin up and spin down carriers are constant and carrier recombination and spin
relaxation are inhibited. Under the general conditions of an applied bias and
externally injected (source) spin, the model formulates analytically carrier
and spin transport in magnetic p-n junctions at low bias. The evaluation of the
carrier and spin densities at the depletion layer establishes the necessary
boundary conditions for solving the diffusive transport equations in the bulk
regions separately, thus greatly simplifying the problem. The carrier and spin
density and current profiles in the bulk regions are calculated and the I-V
characteristics of the junction are obtained. It is demonstrated that spin
injection through the depletion layer of a magnetic p-n junction is not
possible unless nonequilibrium spin accumulates in the bulk regions--either by
external spin injection or by the application of a large bias. Implications of
the theory for majority spin injection across the depletion layer, minority
spin pumping and spin amplification, giant magnetoresistance, spin-voltaic
effect, biasing electrode spin injection, and magnetic drift in the bulk
regions are discussed in details, and illustrated using the example of a GaAs
based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table
Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield
High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe
Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.
- …