109 research outputs found

    How to Teach Pre-Service Teachers to Make a Didactic Program? The Collaborative Learning Associated with Mobile Devices

    Get PDF
    We acknowledge the researchers of the research group AREA (HUM-672), which belongs to the Ministry of Education and Science of the Junta de Andalucía and is registered in the Department of Didactics and School Organization of the Faculty of Education Sciences of the University of Granada.Today, pedagogical proposals are increasingly moving away from purely traditional approaches, with a proliferation of active methodologies in the teaching–learning processes. This research aims to find out the effectiveness of the collaborative method in mobile learning, as opposed to traditional methodology, for university students in the learning of the didactic program. The research methodology is quantitative, applying a quasi-experimental design with a control group and experimental group. The results show that the collaborative learning teaching method associated with mobile learning mainly increases motivation, the relationships between teachers and students, the relationships between students and content, the relationships between students and students, autonomy in learning, pedagogical collaboration between students, problem-solving, and the sense of time in the training process. It is concluded that the collaborative learning method associated with mobile learning is more effective for learning didactic programming than the traditional method

    Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC

    Get PDF
    The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid Argon TPCs is now mature. The study of rare events, not contemplated in the Standard Model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the νμ\nu_\mu charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrate that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the Multiple Coulomb Scattering along the particle's path. Moreover, we show that momentum resolution can be improved by a factor two using an algorithm based on the Kalman Filtering technique

    Energy reconstruction of electromagnetic showers from [Pi 0] decays with the ICARUS T600 liquid argon TPC

    Get PDF
    We discuss the ICARUS T600 detector capabilities in electromagnetic shower reconstruction through the analysis of a sample of 212 events, coming from the 2001 Pavia surface test run, of hadronic interactions leading to the production of 0 mesons. Methods of shower energy and shower direction measurements were developed and the invariant mass of the photon pairs was reconstructed. The ( ) invariant mass was found to be consistent with the value of the 0 mass. The resolution of the reconstructed 0 mass was found to be equal to 27.3%. An improved analysis, carried out in order to clean the full event sample from the events measured in the crowded environment, mostly due to the trigger conditions, gave a 0 mass resolution of 16.1%, significantly better than the one evaluated for the full event sample. The trigger requirement of the coincidence of at least four photo-multiplier signals favored the selection of events with a strong pile up of cosmic ray tracks and interactions. Hence a number of candidate 0 events were heavily contaminated by other tracks and had to be rejected. Monte Carlo simulations of events with 0 production in hadronic and neutrino interactions confirmed the validity of the shower energy and shower direction reconstruction methods applied to the real data

    Planck 2018 results. IV. Diffuse component separation

    Get PDF
    We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degree regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta_d = 1.55 +/- 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta_s = -3.1 +/- 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects

    Planck 2018 results. III. High Frequency Instrument data processing and frequency maps

    Get PDF
    This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the reionization optical depth parameter using HFI data. This paper presents an extensive analysis of systematic effects, including the use of simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved. Calibration, based on the CMB dipole, is now extremely accurate and in the frequency range 100 to 353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35μ0.35\muK, an accuracy of order 10410^{-4}. This is a major legacy from the HFI for future CMB experiments. The removal of bandpass leakage has been improved by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of "frequency maps", which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Simulations reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect. Using these simulations, we measure and correct the small frequency calibration bias induced by this systematic effect at the 10410^{-4} level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10310^{-3} level

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction p, angle \u3c8, and dispersion of angles S of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of p decrease with increasing NH. The uncertainty on the maximum polarization fraction, pmax=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between p and S is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of p, \u3c8, and S mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S 7p, looking for residual trends. While p decreases by a factor of 3--4 between NH=1020 cm 122 and NH=2 71022 cm 122, S 7p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S 7p with the dust temperature, even though in the diffuse ISM lines of sight with high p and low S tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NH and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmax observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Planck 2018 results. XII. Galactic astrophysics using polarized dust emission

    Get PDF
    We present 353 GHz full-sky maps of the polarization fraction pp, angle ψ\psi, and dispersion of angles SS of Galactic dust thermal emission produced from the 2018 release of Planck data. We confirm that the mean and maximum of pp decrease with increasing NHN_H. The uncertainty on the maximum polarization fraction, pmax=22.0p_\mathrm{max}=22.0% at 80 arcmin resolution, is dominated by the uncertainty on the zero level in total intensity. The observed inverse behaviour between pp and SS is interpreted with models of the polarized sky that include effects from only the topology of the turbulent Galactic magnetic field. Thus, the statistical properties of pp, ψ\psi, and SS mostly reflect the structure of the magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map S×pS \times p, looking for residual trends. While pp decreases by a factor of 3--4 between NH=1020N_H=10^{20} cm2^{-2} and NH=2×1022N_H=2\times 10^{22} cm2^{-2}, S×pS \times p decreases by only about 25%, a systematic trend observed in both the diffuse ISM and molecular clouds. Second, we find no systematic trend of S×pS \times p with the dust temperature, even though in the diffuse ISM lines of sight with high pp and low SS tend to have colder dust. We also compare Planck data with starlight polarization in the visible at high latitudes. The agreement in polarization angles is remarkable. Two polarization emission-to-extinction ratios that characterize dust optical properties depend only weakly on NHN_H and converge towards the values previously determined for translucent lines of sight. We determine an upper limit for the polarization fraction in extinction of 13%, compatible with the pmaxp_\mathrm{max} observed in emission. These results provide strong constraints for models of Galactic dust in diffuse gas

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
    corecore