672 research outputs found

    Science, religion and sustainability in schools: outlining a teacher learning community approach.

    Get PDF
    Sustainability is a large and growing field in educational research. Existing research has explored conceptually how the science/religion dialogue might inform sustainability education. This has the potential to enrich sustainability education by acknowledging difference and better engaging students across different religions and worldviews. Fostering a multidisciplinary approach to sustainability education in schools can help create connections between science, RE, geography, economics, and history, as these all contribute to critical thinking and inform compassionate action that supports social justice. Epistemically insightful approaches to teaching and learning have the potential to support this vital dialogue and push back against compartmentalization. In this presentation, we will discuss preliminary work and findings for our pilot study with ECTs, funded by the International Network for Science and Belief in Society. Our project will assess the potential of a cross-national (England and Pakistan) teacher research community model for co-creating resources and approaches that address the above issues of the conflict model, compartmentalization and lack of understanding/confidence in the delivery of sustainability education across different curriculum subjects

    Transient radio lines from axion miniclusters and axion stars

    Get PDF
    Gravitationally bound clumps of dark matter axions in the form of “miniclusters” or even denser “axion stars” can generate strong radio signals through axion-photon conversion when encountering highly magnetized neutron star magnetospheres. We systematically study encounters of axion clumps with neutron stars and characterize the axion infall, conversion and the subsequent propagation of the photons. We show that the high density and low escape velocity of the axion clumps lead to strong, narrow, and temporally characteristic transient radio lines with an expected duration varying from seconds to months. Our work comprises the first end-to-end modeling pipeline capable of characterizing the radio signal generated during these transient encounters, quantifying the typical brightness, anisotropy, spectral width, and temporal evolution of the radio flux. The methods developed here may prove essential in developing dedicated radio searches for transient radio lines arising from miniclusters and axion stars

    Measurement of transmitted power in untapered multifibre unions oscillatory spectral behaviour

    Full text link
    Shows a new structure, the untapered multifibre union, with similar oscillation behaviour to that of tapered single-mode fibres. As a consequences conical regions are not relevant to the final results. This oscillatory behaviour opens the way to low-cost all-fibre devices such as optical filter

    The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources

    Full text link
    The production and analysis of distributed sources of 24Na and 222Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the 3He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described.Comment: 24 pages, 13 figure

    Coherent States of the q--Canonical Commutation Relations

    Full text link
    For the qq-deformed canonical commutation relations a(f)a(g)=(1q)f,g1+qa(g)a(f)a(f)a^\dagger(g) = (1-q)\,\langle f,g\rangle{\bf1}+q\,a^\dagger(g)a(f) for f,gf,g in some Hilbert space H{\cal H} we consider representations generated from a vector Ω\Omega satisfying a(f)Ω=f,ϕΩa(f)\Omega=\langle f,\phi\rangle\Omega, where ϕH\phi\in{\cal H}. We show that such a representation exists if and only if ϕ1\Vert\phi\Vert\leq1. Moreover, for ϕ<1\Vert\phi\Vert<1 these representations are unitarily equivalent to the Fock representation (obtained for ϕ=0\phi=0). On the other hand representations obtained for different unit vectors ϕ\phi are disjoint. We show that the universal C*-algebra for the relations has a largest proper, closed, two-sided ideal. The quotient by this ideal is a natural qq-analogue of the Cuntz algebra (obtained for q=0q=0). We discuss the Conjecture that, for d<d<\infty, this analogue should, in fact, be equal to the Cuntz algebra itself. In the limiting cases q=±1q=\pm1 we determine all irreducible representations of the relations, and characterize those which can be obtained via coherent states.Comment: 19 pages, Plain Te

    Comparison of 3He and129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T

    Get PDF
    BACKGROUND: To support translational lung MRI research with hyperpolarized129Xe gas, comprehensive evaluation of derived quantitative lung function measures against established measures from3He MRI is required. Few comparative studies have been performed to date, only at 3T, and multisession repeatability of129Xe functional metrics have not been reported. PURPOSE/HYPOTHESIS: To compare hyperpolarized129Xe and3He MRI-derived quantitative metrics of lung ventilation and microstructure, and their repeatability, at 1.5T. STUDY TYPE: Retrospective. POPULATION: Fourteen healthy nonsmokers (HN), five exsmokers (ES), five patients with chronic obstructive pulmonary disease (COPD), and 16 patients with nonsmall-cell lung cancer (NSCLC). FIELD STRENGTH/SEQUENCE: 1.5T. NSCLC, COPD patients and selected HN subjects underwent 3D balanced steady-state free-precession lung ventilation MRI using both3He and129Xe. Selected HN, all ES, and COPD patients underwent 2D multislice spoiled gradient-echo diffusion-weighted lung MRI using both hyperpolarized gas nuclei. ASSESSMENT: Ventilated volume percentages (VV%) and mean apparent diffusion coefficients (ADC) were derived from imaging. COPD patients performed the whole MR protocol in four separate scan sessions to assess repeatability. Same-day pulmonary function tests were performed. STATISTICAL TESTS: Intermetric correlations: Spearman's coefficient. Intergroup/internuclei differences: analysis of variance / Wilcoxon's signed rank. Repeatability: coefficient of variation (CV), intraclass correlation (ICC) coefficient. RESULTS: A significant positive correlation between3He and129Xe VV% was observed (r = 0.860, P < 0.001). VV% was larger for3He than129Xe (P = 0.001); average bias, 8.79%. A strong correlation between mean3He and129Xe ADC was obtained (r = 0.922, P < 0.001). MR parameters exhibited good correlations with pulmonary function tests. In COPD patients, mean CV of3He and129Xe VV% was 4.08% and 13.01%, respectively, with ICC coefficients of 0.541 (P = 0.061) and 0.458 (P = 0.095). Mean3He and129Xe ADC values were highly repeatable (mean CV: 2.98%, 2.77%, respectively; ICC: 0.995, P < 0.001; 0.936, P < 0.001). DATA CONCLUSION:129Xe lung MRI provides near-equivalent information to3He for quantitative lung ventilation and microstructural MRI at 1.5T. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage

    Coping with the effects of fear of failure in young elite athletes

    Get PDF
    Coping with stress is an important element in effective functioning at the elite level in sports, and fear of failure (FF) is an example of a stressor that athletes experience. Three issues underpin the present preliminary study. First, the prevalence of problems attributed to FF in achievement settings. Second, sport is a popular and significant achievement domain for children and adolescents. Third, there is a lack of research on FF in sport among this population. Therefore, the objectives of the study were to examine the effects of FF on young athletes and to find out their coping responses to the effects of FF. Interviews were conducted individually with nine young elite ath­letes (5 males, 4 females; ages 14-17 years). It was inferred from the data that FF affected the athletes' well-being, interpersonal behavior, sport performance, and schoolwork. The athletes employed a combination of problem-focused, emotion-fo­cused, and avoidance-focused coping strategies, with avoidance strategies being the most frequently reported

    Foreground removal from CMB temperature maps using an MLP neural network

    Full text link
    One of the main obstacles in extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the galactic foregrounds simple, power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined CMB and foreground signals has been investigated. As a specific example, we have analysed simulated data, like that expected from the ESA Planck Surveyor mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates, over more than 80 percent of the sky, that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.Comment: Accepted for publication in Astrophysics and Space Scienc

    Constraints on Low-Mass WIMP Interactions on 19F from PICASSO

    Get PDF
    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.Comment: 23 pages, 7 figures, to be published in Phys. Lett.
    corecore