89 research outputs found

    Human activity recognition from inertial sensor time-series using batch normalized deep LSTM recurrent networks

    Get PDF
    In recent years machine learning methods for human activity recognition have been found very effective. These classify discriminative features generated from raw input sequences acquired from body-worn inertial sensors. However, it involves an explicit feature extraction stage from the raw data, and although human movements are encoded in a sequence of successive samples in time most state-of-the-art machine learning methods do not exploit the temporal correlations between input data samples. In this paper we present a Long-Short Term Memory (LSTM) deep recurrent neural network for the classification of six daily life activities from accelerometer and gyroscope data. Results show that our LSTM can processes featureless raw input signals, and achieves 92 % average accuracy in a multi-class-scenario. Further, we show that this accuracy can be achieved with almost four times fewer training epochs by using a batch normalization approach

    Five day attachment ECG electrodes for longitudinal bio-sensing using conformal tattoo substrates

    Get PDF
    State-of-the-art ECG (electrocardiography) uses wet Silver/Silver-Chloride (Ag/AgCl) electrodes where a conductive gel is used to provide a esistive, low impedance, connection to the skin. These electrodes are very easy to apply, but have a significant number of limitations for personalized and preventative healthcare. In particular that the gel dries out giving a limited connection time. This paper presents ECG electrodes manufactured using the inkjet printing of Silver nanoparticles onto a conformal tattoo substrate. The substrate maintains a high quality connection to the body for many days at a time allowing ECG monitoring over periods not previously possible without electrode re-attachment. The design and manufacture of the conformal electrodes is presented, together with detailed characterization of the electrode performance in terms of the Signal to Noise Ratio and baseline wander. The Signal to Noise Ratio is shown to still be over 30 dB five days after the initial electrode attachment

    Geodesic laminations revisited

    Full text link
    The Bratteli diagram is an infinite graph which reflects the structure of projections in a C*-algebra. We prove that every strictly ergodic unimodular Bratteli diagram of rank 2g+m-1 gives rise to a minimal geodesic lamination with the m-component principal region on a surface of genus g greater or equal to 1. The proof is based on the Morse theory of the recurrent geodesics on the hyperbolic surfaces.Comment: 13 pages, 2 figures, revised versio

    Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices

    Get PDF
    Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail

    Ultra-Low Power on Skin ECG using RFID Communication

    Get PDF
    Electrocardiograms provide rhythm, rate and electrical activity of the heart which can be used to diagnose health issues. Current methodologies for wireless based heart monitoring favour the use of Bluetooth Low Energy, which can require bulky batteries for device longevity. This paper investigates the use of a novel ultra-low power communications technique utilising Ultra High Frequency Radio Frequency Identification to stream ECG data in real time to a host computer to enable sub 2mW power consumption

    Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications

    Get PDF
    Wearable e-textiles have gained huge tractions due to their potential for non-invasive health monitoring. However, manufacturing of multifunctional wearable e-textiles remains challenging, due to poor performance, comfortability, scalability, and cost. Here, we report a fully printed, highly conductive, flexible, and machine-washable e-textiles platform that stores energy and monitor physiological conditions including bio-signals. The approach includes highly scalable printing of graphene-based inks on a rough and flexible textile substrate, followed by a fine encapsulation to produce highly conductive machine-washable e-textiles platform. The produced e-textiles are extremely flexible, conformal, and can detect activities of various body parts. The printed in-plane supercapacitor provides an aerial capacitance of ∼3.2 mFcm−2 (stability ∼10,000 cycles). We demonstrate such e-textiles to record brain activity (an electroencephalogram, EEG) and find comparable to conventional rigid electrodes. This could potentially lead to a multifunctional garment of graphene-based e-textiles that can act as flexible and wearable sensors powered by the energy stored in graphene-based textile supercapacitors

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF

    A.J. Casson

    No full text
    Murray traces the development of Casson's paintings stressing the influence of other Group of Seven members. Includes an artist's statement and biographical notes. 6 bibl. ref
    corecore