101 research outputs found

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Status of NSLS-II booster

    No full text
    The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy booster-synchrotron. Budker Institute of Nuclear Physics builds booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from minimal 170 MeV injection energy to maximal energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. This paper summarizes the status of NSLS-II booster.ĐĐ°Ń†ĐžĐŸĐœĐ°Đ»ŃŒĐœŃ‹Đč ĐžŃŃ‚ĐŸŃ‡ĐœĐžĐș ŃĐžĐœŃ…Ń€ĐŸŃ‚Ń€ĐŸĐœĐœĐŸĐłĐŸ ĐžĐ·Đ»ŃƒŃ‡Đ”ĐœĐžŃ II яĐČĐ»ŃĐ”Ń‚ŃŃ ŃĐžĐœŃ…Ń€ĐŸŃ‚Ń€ĐŸĐœĐŸĐŒ Ń‚Ń€Đ”Ń‚ŃŒĐ”ĐłĐŸ ĐżĐŸĐșĐŸĐ»Đ”ĐœĐžŃ, ŃĐŸĐ·ĐŽĐ°ĐœĐœŃ‹ĐŒ ĐČ Đ‘Ń€ŃƒĐșŃ…Đ”ĐČĐ”ĐœŃĐșĐŸĐč ĐœĐ°Ń†ĐžĐŸĐœĐ°Đ»ŃŒĐœĐŸĐč Đ»Đ°Đ±ĐŸŃ€Đ°Ń‚ĐŸŃ€ĐžĐž. ĐŸŃ€ĐŸĐ”Đșт ĐČĐșлючаДт: ĐČŃ‹ŃĐŸĐșĐŸĐŸĐżŃ‚ĐžĐŒĐžĐ·ĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐ” ĐœĐ°ĐșĐŸĐżĐžŃ‚Đ”Đ»ŃŒĐœĐŸĐ” ĐșĐŸĐ»ŃŒŃ†ĐŸ ĐœĐ° 3 ГэВ, Đ»ĐžĐœĐ”ĐčĐœŃ‹Đč усĐșĐŸŃ€ĐžŃ‚Đ”Đ»ŃŒ Đž Đ±ŃƒŃŃ‚Đ”Ń€ĐœŃ‹Đč ŃĐžĐœŃ…Ń€ĐŸŃ‚Ń€ĐŸĐœ ĐœĐ° ĐżĐŸĐ»ĐœŃƒŃŽ ŃĐœĐ”Ń€ĐłĐžŃŽ. Đ˜ĐœŃŃ‚ĐžŃ‚ŃƒŃ‚ ŃĐŽĐ”Ń€ĐœĐŸĐč фОзОĐșĐž ĐžĐŒ. Г.И. БуЮĐșДра ŃĐŸĐ·ĐŽĐ°Đ”Ń‚ Đ±ŃƒŃŃ‚Đ”Ń€ ĐŽĐ»Ń NSLS-II. Đ‘ŃƒŃŃ‚Đ”Ń€ ĐŽĐŸĐ»Đ¶Đ”Đœ ĐœĐ°ĐŽĐ”Đ¶ĐœĐŸ Đž ĐœĐ”ĐżŃ€Đ”Ń€Ń‹ĐČĐœĐŸ усĐșĐŸŃ€ŃŃ‚ŃŒ ĐżŃƒŃ‡ĐŸĐș ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐœĐŸĐČ ĐŸŃ‚ ĐŒĐžĐœĐžĐŒĐ°Đ»ŃŒĐœĐŸĐč ŃĐœĐ”Ń€ĐłĐžĐž ĐžĐœĐ¶Đ”Đșцоо 170 МэВ ĐŽĐŸ ĐŒĐ°ĐșŃĐžĐŒĐ°Đ»ŃŒĐœĐŸĐč ŃĐœĐ”Ń€ĐłĐžĐž 3,15 ГэВ с Ń‚ĐŸĐșĐŸĐŒ пучĐșĐ° 20 ĐŒĐ. Đ‘ŃƒŃŃ‚Đ”Ń€ ĐŽĐŸĐ»Đ¶Đ”Đœ Đ±Ń‹Ń‚ŃŒ ŃĐżĐŸŃĐŸĐ±Đ”Đœ Ń€Đ°Đ±ĐŸŃ‚Đ°Ń‚ŃŒ ĐČ ĐŸĐŽĐœĐŸŃĐłŃƒŃŃ‚ĐșĐŸĐČĐŸĐŒ Đž ĐŒĐœĐŸĐłĐŸŃĐłŃƒŃŃ‚ĐșĐŸĐČĐŸĐŒ Ń€Đ”Đ¶ĐžĐŒĐ°Ń…. Эта статья ŃŃƒĐŒĐŒĐžŃ€ŃƒĐ”Ń‚ ŃĐŸŃŃ‚ĐŸŃĐœĐžĐ” ЎДл ĐżĐŸ Đ±ŃƒŃŃ‚Đ”Ń€Ńƒ ĐŽĐ»Ń NSLS-II.ĐĐ°Ń†Ń–ĐŸĐœĐ°Đ»ŃŒĐœĐ” ĐŽĐ¶Đ”Ń€Đ”Đ»ĐŸ ŃĐžĐœŃ…Ń€ĐŸŃ‚Ń€ĐŸĐœĐœĐŸĐłĐŸ ĐČĐžĐżŃ€ĐŸĐŒŃ–ĐœŃŽĐČĐ°ĐœĐœŃ II є ŃĐžĐœŃ…Ń€ĐŸŃ‚Ń€ĐŸĐœĐŸĐŒ Ń‚Ń€Đ”Ń‚ŃŒĐŸĐłĐŸ ĐżĐŸĐșĐŸĐ»Ń–ĐœĐœŃ, стĐČĐŸŃ€Đ”ĐœĐžĐŒ у БруĐșŃ…Đ”ĐČĐ”ĐœŃŃŒĐșіĐč ĐœĐ°Ń†Ń–ĐŸĐœĐ°Đ»ŃŒĐœŃ–Đč Đ»Đ°Đ±ĐŸŃ€Đ°Ń‚ĐŸŃ€Ń–Ń—. ĐŸŃ€ĐŸĐ”Đșт ĐČĐșлючає: ĐČĐžŃĐŸĐșĐŸĐŸĐżŃ‚ĐžĐŒŃ–Đ·ĐŸĐČĐ°ĐœĐ” ĐœĐ°ĐșĐŸĐżĐžŃ‡ŃƒĐČĐ°Đ»ŃŒĐœĐ” ĐșŃ–Đ»ŃŒŃ†Đ” ĐœĐ° 3 ГДВ, Đ»Ń–ĐœŃ–ĐčĐœĐžĐč просĐșĐŸŃ€ŃŽĐČач і Đ±ŃƒŃŃ‚Đ”Ń€ĐœĐžĐč ŃĐžĐœŃ…Ń€ĐŸŃ‚Ń€ĐŸĐœ ĐœĐ° ĐżĐŸĐČĐœŃƒ Đ”ĐœĐ”Ń€ĐłŃ–ŃŽ. Đ†ĐœŃŃ‚ĐžŃ‚ŃƒŃ‚ ŃĐŽĐ”Ń€ĐœĐŸŃ— Ń„Ń–Đ·ĐžĐșĐž Ń–ĐŒ. Г.І. БуЮĐșДра стĐČĐŸŃ€ŃŽŃ” Đ±ŃƒŃŃ‚Đ”Ń€ ĐŽĐ»Ń NSLS-II. Đ‘ŃƒŃŃ‚Đ”Ń€ ĐżĐŸĐČĐžĐœĐ”Đœ ĐœĐ°ĐŽŃ–ĐčĐœĐŸ і бДзпДрДрĐČĐœĐŸ просĐșĐŸŃ€ŃŽĐČато ĐżŃƒŃ‡ĐŸĐș ДлДĐșŃ‚Ń€ĐŸĐœŃ–ĐČ ĐČіЮ ĐŒŃ–ĐœŃ–ĐŒĐ°Đ»ŃŒĐœĐŸŃ— Đ”ĐœĐ”Ń€ĐłŃ–Ń— Ń–ĐœĐ¶Đ”Đșції 170 ĐœĐ”Đ’ ĐŽĐŸ ĐŒĐ°ĐșŃĐžĐŒĐ°Đ»ŃŒĐœĐŸŃ— Đ”ĐœĐ”Ń€ĐłŃ–Ń— 3,15 ГДВ Đ·Ń– ŃŃ‚Ń€ŃƒĐŒĐŸĐŒ пучĐșĐ° 20 ĐŒĐ. Đ‘ŃƒŃŃ‚Đ”Ń€ ĐżĐŸĐČĐžĐœĐ”Đœ Đ±ŃƒŃ‚Đž Đ·ĐŽĐ°Ń‚ĐœĐžĐč працюĐČато ĐČ ĐŸĐŽĐœĐŸŃĐłŃƒŃŃ‚ĐșĐŸĐČĐŸĐŒŃƒ і Đ±Đ°ĐłĐ°Ń‚ĐŸŃĐłŃƒŃŃ‚ĐșĐŸĐČĐŸĐŒŃƒ Ń€Đ”Đ¶ĐžĐŒĐ°Ń…. Щя стаття ĐżŃ–ĐŽŃŃƒĐŒĐŸĐČує ŃŃ‚Đ°Đœ спраĐČ ĐżĐŸ Đ±ŃƒŃŃ‚Đ”Ń€Ńƒ ĐŽĐ»Ń NSLS-II

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    First experimental results obtained using the highpower free electron laser at the siberian center for photochemical research

    No full text
    The first lasing near the wavelength of 140 ”m was achieved in April 2003 using a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper we briefly describe the design of the FEL driven by an accelerator–recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained in the first experiments, are also presented in the paper.ĐŁ ĐĄĐžĐ±Ń–Ń€ŃŃŒĐșĐŸĐŒŃƒ Ń†Đ”ĐœŃ‚Ń€Ń– Ń„ĐŸŃ‚ĐŸŃ…Ń–ĐŒŃ–Ń‡ĐœĐžŃ… ĐŽĐŸŃĐ»Ń–ĐŽĐ¶Đ”ĐœŃŒ ĐœĐ°ĐČĐ”ŃĐœŃ– 2003 Ń€ĐŸĐșу ĐŸŃ‚Ń€ĐžĐŒĐ°ĐœĐ° ĐłĐ”ĐœĐ”Ń€Đ°Ń†Ń–Ń ĐČĐžĐżŃ€ĐŸĐŒŃ–ĐœŃŽĐČĐ°ĐœĐœŃ Đ· ĐŽĐŸĐČĐ¶ĐžĐœĐŸŃŽ хĐČОлі 140 ĐŒĐșĐŒ ĐœĐ° ĐżĐŸŃ‚ŃƒĐ¶ĐœĐŸĐŒŃƒ лазДрі ĐœĐ° ĐČŃ–Đ»ŃŒĐœĐžŃ… ДлДĐșŃ‚Ń€ĐŸĐœĐ°Ń… (ЛВЕ). ĐŁ Ń€ĐŸĐ±ĐŸŃ‚Ń– ĐșĐŸŃ€ĐŸŃ‚ĐșĐŸ ĐŸĐżĐžŃĐ°ĐœĐ° ĐșĐŸĐœŃŃ‚Ń€ŃƒĐșція ЛВЕ ĐœĐ° базі просĐșĐŸŃ€ŃŽĐČача рДĐșŃƒĐżĐ”Ń€Đ°Ń‚ĐŸŃ€Đ° і прДЎстаĐČĐ»Đ”ĐœŃ– Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đž ĐČĐžĐŒŃ–Ń€ŃŽĐČĐ°ĐœĐœŃ ĐŽĐ”ŃĐșох ĐżĐ°Ń€Đ°ĐŒĐ”Ń‚Ń€Ń–ĐČ Đ”Đ»Đ”ĐșŃ‚Ń€ĐŸĐœĐœĐŸĐłĐŸ пучĐșĐ° і Ń‚Đ”Ń€Đ°ĐłĐ”Ń€Ń†ĐŸĐČĐŸĐłĐŸ ĐČĐžĐżŃ€ĐŸĐŒŃ–ĐœŃŽĐČĐ°ĐœĐœŃ.В ХОбОрсĐșĐŸĐŒ Ń†Đ”ĐœŃ‚Ń€Đ” Ń„ĐŸŃ‚ĐŸŃ…ĐžĐŒĐžŃ‡Đ”ŃĐșох ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč ĐČĐ”ŃĐœĐŸĐč 2003 ĐłĐŸĐŽĐ° ĐżĐŸĐ»ŃƒŃ‡Đ”ĐœĐ° ĐłĐ”ĐœĐ”Ń€Đ°Ń†ĐžŃ ĐžĐ·Đ»ŃƒŃ‡Đ”ĐœĐžŃ с ĐŽĐ»ĐžĐœĐŸĐč ĐČĐŸĐ»ĐœŃ‹ 140 ĐŒĐșĐŒ ĐœĐ° ĐŒĐŸŃ‰ĐœĐŸĐŒ лазДрД ĐœĐ° сĐČĐŸĐ±ĐŸĐŽĐœŃ‹Ń… ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐœĐ°Ń… (ЛСЭ). В Ń€Đ°Đ±ĐŸŃ‚Đ” ĐșратĐșĐŸ ĐŸĐżĐžŃĐ°ĐœĐ° ĐșĐŸĐœŃŃ‚Ń€ŃƒĐșцоя ЛСЭ ĐœĐ° базД усĐșĐŸŃ€ĐžŃ‚Đ”Đ»Ń рДĐșŃƒĐżĐ”Ń€Đ°Ń‚ĐŸŃ€Đ° Đž прДЎстаĐČĐ»Đ”ĐœŃ‹ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐžĐ·ĐŒĐ”Ń€Đ”ĐœĐžŃ ĐœĐ”ĐșĐŸŃ‚ĐŸŃ€Ń‹Ń… ĐżĐ°Ń€Đ°ĐŒĐ”Ń‚Ń€ĐŸĐČ ŃĐ»Đ”ĐșŃ‚Ń€ĐŸĐœĐœĐŸĐłĐŸ пучĐșĐ° Đž Ń‚Đ”Ń€Đ°ĐłĐ”Ń€Ń†ĐŸĐČĐŸĐłĐŸ ĐžĐ·Đ»ŃƒŃ‡Đ”ĐœĐžŃ

    Multiplicity dependence of (anti-)deuteron production in pp collisions at root s=7 TeV

    Get PDF
    none1019siIn this letter, the production of deuterons and anti-deuterons in pp collisions at root s = 7 TeV is studied as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a function of the deuteron transverse momentum (p(T)). The measurements are discussed in the context of hadron-coalescence models. The coalescence parameter B-2, extracted from the measured spectra of (anti-)deuteronsand primary (anti-)protons, exhibits no significant p(T)-dependence for p(T) < 3 GeV/c, in agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per nucleon, the B-2 parameter is found to decrease smoothly from low multiplicity pp to Pb-Pb collisions, in qualitative agreement with more elaborate coalescence models. The measured mean transverse momentum of (anti-)deuterons in pp is not reproduced by the Blast-Wave model calculations that simultaneously describe pion, kaon and proton spectra, in contrast to central Pb-Pb collisions. The ratio between the p(T)-integrated yield of deuterons to protons, d/p, is found to increase with the charged-particle multiplicity, as observed in inelastic pp collisions at different centre-of-mass energies. The d/p ratios are reported in a wide range, from the lowest to the highest multiplicity values measured in pp collisions at the LHC. (C) 2019 The Author(s). Published by Elsevier B.VnoneAcharya, S.; Acosta, F. T.; Adamova, D.; Adhya, S. P.; Adler, A.; Adolfsson, J.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfanda, H. M.; Alfaro Molina, R.; Ali, B.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I; Anaam, M. N.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Angeletti, M.; Anguelov, V; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Apadula, N.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arratia, M.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbera, R.; Barioglio, L.; Barnafoldi, G. G.; Barnby, L. S.; Barret, V; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bauri, D.; Bazo Alba, J. L.; Bearden, I. G.; Bedda, C.; Behera, N. K.; Belikov, I; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhatt, H.; Bhattacharjee, B.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsar, L.; Bolozdynya, A.; Bombara, M.; Bonomi, G.; Bonora, M.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Buckland, M. D.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camacho, R. S.; Camerini, P.; Capon, A. A.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Chakraborty, P.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Balbastre, G. Conesa; del Valle, Z. Conesa; Contin, G.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovska, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dabrowski, D.; Dahms, T.; Dainese, A.; Damas, F. P. A.; Dani, S.; Danisch, M. C.; Danu, A.; Das, D.; Das, I; Das, S.; Dash, A.; Dash, S.; Dashi, A.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Delsanto, S.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Diaz, R. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divia, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Doenigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Erokhin, A.; Ersdal, M. R.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faggin, M.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernandez Tellez, A.; Ferrero, A.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiorenza, G.; Flor, F.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhoje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Garner, K.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Glaessel, P.; Gomez Coral, D. M.; Ramirez, A. Gomez; Gonzalez, V; Gonzalez-Zamora, P.; Gorbunov, S.; Gorlich, L.; Gotovac, S.; Grabski, V; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guernane, R.; Guerzoni, B.; Guittiere, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Habib, M. K.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamid, M.; Hamon, J. C.; Hannigan, R.; Haque, M. R.; Harlenderova, A.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hauer, P.; Hayashi, S.; Heckel, S. T.; Hellbaer, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hota, J.; Hristov, P.; Huang, C.; Hughes, C.; Huhn, P.; Humanic, T. J.; Hushnud, H.; Husova, L. A.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iddon, J. P.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V; Izucheev, V; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jercic, M.; Jevons, O.; Bustamante, R. T. Jimenez; Jin, M.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, A. M.; Khan, S.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, E. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kindra, K.; Kirsch, S.; Kisel, I; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, C.; Klein, J.; Klein, S.; Klein-Boesing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Koehler, M. K.; Kollegger, T.; Kondratyeva, N.; Kondratyuk, E.; Konopka, P. J.; Konyushikhin, M.; Koska, L.; Kovalenko, O.; Kovalenko, V; Kowalski, M.; Kralik, I; Kravcakova, A.; Kreis, L.; Krivda, M.; Krizek, F.; Krueger, M.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kucera, V; Kuhn, C.; Kuijer, P. G.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kushpil, S.; Kvapil, J.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lai, Y. S.; Langoy, R.; Lapidus, K.; Lardeux, A.; Larionov, P.; Laudi, E.; Lavicka, R.; Lazareva, T.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leon Monzon, I; Levai, P.; Li, X.; Li, X. L.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V; Liu, A.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loginov, V; Loizides, C.; Loncar, P.; Lopez, X.; Lopez Torres, E.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Mahmoud, T.; Maire, A.; Majka, R. D.; Malaev, M.; Malik, Q. W.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V; Manso, F.; Manzari, V; Mao, Y.; Marchisone, M.; Mares, J.; Margagliotti, G., V; Margotti, A.; Margutti, J.; Marin, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. L.; Martinez, M., I; Garcia, G. Martinez; Pedreira, M. Martinez; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Meres, M.; Mhlanga, S.; Miake, Y.; Micheletti, L.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Khan, M. Mohisin; Mondal, M. M.; Mordasini, C.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Mrnjavac, T.; Muccifora, V; Mudnic, E.; Muehlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Muenning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nassirpour, A. F.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; De Oliveira, R. A. Negrao; Nellen, L.; Nesbo, S., V; Neskovic, G.; Ng, F.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Ogino, M.; Ohlson, A.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V; Pagano, D.; Paic, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V; Pareek, P.; Park, J.; Parkkila, J. E.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Da Costa, H. Pereira; Peresunko, D.; Perez, G. M.; Lezama, E. Perez; Peskov, V; Pestov, Y.; Petracek, V; Petrovici, M.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Pisano, S.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I; Puccio, M.; Punin, V; Puranapanda, K.; Putschke, J.; Quishpe, R. E.; Ragoni, S.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Rasanen, S. S.; Rascanu, B. T.; Rath, R.; Ratza, V; Ravasenga, I; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Revol, J-P; Reygers, K.; Riabov, V; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rode, S. P.; Rodriguez Cahuantzi, M.; Roed, K.; Rogalev, R.; Rogochaya, E.; Rohr, D.; Rohrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Roslon, K.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, P.; Rueda, O., V; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Safarik, K.; Saha, S. K.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Sambyal, S.; Samsonov, V; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sarti, V. M.; Sas, M. H. P.; Scapparone, E.; Schaefer, B.; Schambach, J.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmah, A.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N., V; Schmier, A. R.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Sefcik, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Sheikh, A., I; Shigaki, K.; Shimomura, M.; Shirinkin, S.; Shou, Q.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singh, R.; Singhal, V; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Sochan, J.; Soncco, C.; Song, J.; Songmoolnak, A.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I; Stachel, J.; Stan, I; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Sumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tarzila, M. G.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Topilskaya, N.; Toppi, M.; Torres, S. R.; Tripathy, S.; Tripathy, T.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V; Trzaska, W. H.; Trzcinski, T. P.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Valle, N.; van der Kolk, N.; van Doremalen, L. V. R.; Van Hoorne, J. W.; van Leeuwen, M.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Doce, O. Vazquez; Vechernin, V.; Veen, A. M.; Vercellin, E.; Vergara Limon, S.; Vermunt, L.; Vernet, R.; Vertesi, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Villatoro Tello, A.; Vino, G.; Vinogradov, A.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Volkel, B.; Voelkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I; Voscek, D.; Vrlakova, J.; Wagner, B.; Wang, M.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wegrzynek, A.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Widmann, E.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Willsher, E.; Windelband, B.; Witt, W. E.; Wu, Y.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I-K; Yoon, J. H.; Yuan, S.; Yurchenko, V; Zaccolo, V; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, C.; Zherebchevskii, V; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zurlo, N.Acharya, S.; Acosta, F. T.; Adamova, D.; Adhya, S. P.; Adler, A.; Adolfsson, J.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfanda, H. M.; Alfaro Molina, R.; Ali, B.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I; Anaam, M. N.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Angeletti, M.; Anguelov, V; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Apadula, N.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arratia, M.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbera, R.; Barioglio, L.; Barnafoldi, G. G.; Barnby, L. S.; Barret, V; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bauri, D.; Bazo Alba, J. L.; Bearden, I. G.; Bedda, C.; Behera, N. K.; Belikov, I; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhatt, H.; Bhattacharjee, B.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsar, L.; Bolozdynya, A.; Bombara, M.; Bonomi, G.; Bonora, M.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Buckland, M. D.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camacho, R. S.; Camerini, P.; Capon, A. A.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Chakraborty, P.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Balbastre, G. Conesa; del Valle, Z. Conesa; Contin, G.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovska, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dabrowski, D.; Dahms, T.; Dainese, A.; Damas, F. P. A.; Dani, S.; Danisch, M. C.; Danu, A.; Das, D.; Das, I; Das, S.; Dash, A.; Dash, S.; Dashi, A.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Delsanto, S.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Diaz, R. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divia, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Doenigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Erokhin, A.; Ersdal, M. R.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faggin, M.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernandez Tellez, A.; Ferrero, A.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiorenza, G.; Flor, F.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhoje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Garner, K.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Glaessel, P.; Gomez Coral, D. M.; Ramirez, A. Gomez; Gonzalez, V; Gonzalez-Zamora, P.; Gorbunov, S.; Gorlich, L.; Gotovac, S.; Grabski, V; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guernane, R.; Guerzoni, B.; Guittiere, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Habib, M. K.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamid, M.; Hamon, J. C.; Hannigan, R.; Haque, M. R.; Harlenderova, A.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hauer, P.; Hayashi, S.; Heckel, S. T.; Hellbaer, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hota, J.; Hristov, P.; Huang, C.; Hughes, C.; Huhn, P.; Humanic, T. J.; Hushnud, H.; Husova, L. A.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iddon, J. P.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V; Izucheev, V; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jercic, M.; Jevons, O.; Bustamante, R. T. Jimenez; Jin, M.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, A. M.; Khan, S.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, E. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kindra, K.; Kirsch, S.; Kisel, I; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, C.; Klein, J.; Klein, S.; Klein-Boesing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Koehler, M. K.; Kollegger, T.; Kondratyeva, N.; Kondratyuk, E.; Konopka, P. J.; Konyushikhin, M.; Koska, L.; Kovalenko, O.; Kovalenko, V; Kowalski, M.; Kralik, I; Krav

    Modeling the passage of large-scale internal gravitational waves from the troposphere to the ionosphere

    No full text
    On the basis of two-dimensional numerical computations of the trajectories of internal gravitational waves (IGW), propagation of IGW in a vertically non-uniform atmosphere from tropospheric heights to the ionosphere is considered in the presence of zonal flows with allowance for their height heterogeneity. In the troposphere, IGW can be excited with the development of such processes as large-scale vortices, earthquakes, etc. For series of data on the vertical profiles of the VÀisÀlÀ-Brent frequency and the altitude profile of the velocity of the zonal flow in the atmosphere, an analysis is made for the possibility of passage of small- and medium-scale IGW from the troposphere to the ionosphere up to a height of more than 80 km. According to numerical calculations, depending on the IGW parameters and the zonal flow in the atmosphere, various variants of IGW propagation in a vertically inhomogeneous troposphere-ionosphere system are possible. In particular, a conclusion made earlier is confirmed that if there are critical layers or layers of vertical refection in the atmosphere, the passage of IGW into the ionosphere is impossible. In the presence of a critical layer, IGW propagating to it from below greatly slows down, the vertical component of the wave vector increases strongly, and the IGW near the critical layer propagates almost horizontally. Moreover, due to the large increase in viscosity, it is actually completely absorbed at the height of the critical layer. Depending on the initial parameters of the system, there may be a situation when a layer of horizontal refection appears at a certain height, and IGW is refected (propagating upward) back to the source of its excitation. Then, a vertical refection layer can appear above, and the wave, propagating downward from it, again approaches the horizontal refection layer. After refection in it, IGW returns to the source on the other side. According to the numerical calculations of the IGW dynamics, the horizontal displacement of the IGW packet during propagation from the troposphere to the ionosphere can be large (depending on the choice of the initial parameters of the problem, the altitude profles of the zonal stream, the VÀisÀlÀ-Brent frequency) and can be thousands of kilometers. Consequently, under the conditions of realization of the IGW passage from the troposphere to ionospheric heights, precursors of crisis events in the ionosphere (including plasma perturbations) can be observed by satellite equipment at large distances horizontally from the source of generation of IGW. This circumstance should be taken into account when analyzing and interpreting experimental data on the relationship between ionospheric disturbances and crisis phenomena, for example, earthquakes, tropical cyclones, etc

    Modeling the passage of large-scale internal gravitational waves from the troposphere to the ionosphere

    No full text
    On the basis of two-dimensional numerical computations of the trajectories of internal gravitational waves (IGW), propagation of IGW in a vertically non-uniform atmosphere from tropospheric heights to the ionosphere is considered in the presence of zonal flows with allowance for their height heterogeneity. In the troposphere, IGW can be excited with the development of such processes as large-scale vortices, earthquakes, etc. For series of data on the vertical profiles of the VÀisÀlÀ-Brent frequency and the altitude profile of the velocity of the zonal flow in the atmosphere, an analysis is made for the possibility of passage of small- and medium-scale IGW from the troposphere to the ionosphere up to a height of more than 80 km. According to numerical calculations, depending on the IGW parameters and the zonal flow in the atmosphere, various variants of IGW propagation in a vertically inhomogeneous troposphere-ionosphere system are possible. In particular, a conclusion made earlier is confirmed that if there are critical layers or layers of vertical refection in the atmosphere, the passage of IGW into the ionosphere is impossible. In the presence of a critical layer, IGW propagating to it from below greatly slows down, the vertical component of the wave vector increases strongly, and the IGW near the critical layer propagates almost horizontally. Moreover, due to the large increase in viscosity, it is actually completely absorbed at the height of the critical layer. Depending on the initial parameters of the system, there may be a situation when a layer of horizontal refection appears at a certain height, and IGW is refected (propagating upward) back to the source of its excitation. Then, a vertical refection layer can appear above, and the wave, propagating downward from it, again approaches the horizontal refection layer. After refection in it, IGW returns to the source on the other side. According to the numerical calculations of the IGW dynamics, the horizontal displacement of the IGW packet during propagation from the troposphere to the ionosphere can be large (depending on the choice of the initial parameters of the problem, the altitude profles of the zonal stream, the VÀisÀlÀ-Brent frequency) and can be thousands of kilometers. Consequently, under the conditions of realization of the IGW passage from the troposphere to ionospheric heights, precursors of crisis events in the ionosphere (including plasma perturbations) can be observed by satellite equipment at large distances horizontally from the source of generation of IGW. This circumstance should be taken into account when analyzing and interpreting experimental data on the relationship between ionospheric disturbances and crisis phenomena, for example, earthquakes, tropical cyclones, etc

    Multiplicity dependence of (anti-)deuteron production in pp collisions at 1as=7TeV

    Get PDF
    In this letter, the production of deuterons and anti-deuterons in pp collisions at 1as = 7 TeV is studied as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a function of the deuteron transverse momentum (pT). The measurements are discussed in the context of hadron\u2013coalescence models. The coalescence parameter B2, extracted from the measured spectra of (anti-)deuterons and primary (anti-)protons, exhibits no significant pT-dependence for pT < 3 GeV/c, in agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per nucleon, the B2 parameter is found to decrease smoothly from low multiplicity pp to Pb\u2013Pb collisions, in qualitative agreement with more elaborate coalescence models. The measured mean transverse momentum of (anti-)deuterons in pp is not reproduced by the Blast-Wave model calculations that simultaneously describe pion, kaon and proton spectra, in contrast to central Pb\u2013Pb collisions. The ratio between the pT-integrated yield of deuterons to protons, d/p, is found to increase with the charged- particle multiplicity, as observed in inelastic pp collisions at different centre-of-mass energies. The d/p ratios are reported in a wide range, from the lowest to the highest multiplicity values measured in pp collisions at the LHC
    • 

    corecore