18 research outputs found

    Small-Scale Power Plants Based on Organic Rankine cycle (ORC) using Low-Boiling Fluorocarbon Working Fluids when Operating at High Initial Cycle Conditions

    Get PDF
    The purpose of the work is to develop and analyze the operation of a thermal circuit based on the organic Rankine cycle (ORC) using low-boiling working substances of the fluorocarbon class when operating at high initial cycle parameters. This goal is achieved by energy analysis of single- and multi-stage thermal circuits of power plants with a turbine circuit operating on low-boiling fluorocarbon working substances, such as octafluoropropane C3F8 and decafluorobutane C4F10. It is proposed to integrate the ORC thermal circuit as an extension to a small-capacity gas turbine power plant (GTU), operating on synthesis gas after a biomass gasifier. The most im-portant results of the work are the possibility of implementing a cycle with a low condensation temperature of the medium, which allows, when using low-boiling working fluids, to significant-ly reduce the temperature of the heat removal process and, consequently, increase the efficiency of the cycle. The possibility of using the listed working substances in power plants with a turbine circuit, which until now have been used mainly as refrigerants for refrigeration and heat pump systems, has been shown. The significance of the results of the work lies in the fact that, based on the analysis of the energy complex, a circuit solution has been proposed and justified that can increase the energy efficiency of the power supply complex, increasing the volume of gen-erated electrical power and providing a number of technological and environmental advantages

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1^{-1}. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak Wγjj_{γjj} production in a restricted fiducial region is measured as 20.4 +/- 4.5 fb and the total cross section for Wγ_{γ} production in association with 2 jets in the same fiducial region is 108 +/- 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators

    Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±W±boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13TeV, corresponding to an integrated luminosity of 137fb−1. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±W±scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88)fbis set on the production cross section for longitudinally polarized same-sign W±W±boson pairs. The electroweak production of same-sign W±W±boson pairs with at least one of the Wbosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.SCOAP

    WIF-1 gene methylation in cervical squamous intraepithelial lesions

    No full text
    Objective. To evaluate the diagnostic value of WIF-1 gene promoter region methylation in the development of cervical intraepithelial neoplasia. Subjects and methods. The investigation included 62 patients aged 18 to 55 years who had come to the Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, in the period February to August 2016 for examination and undergone liquid-based cytology, quantitative and qualitative tests for human papillomavirus (HPV), histological examination of cervical biopsy specimens, and extended colposcopy. Bisulfite sequencing was used to study the level of WIF-1 promoter methylation in 62 samples of cells taken from the cervical canal with a cervix brush. Results. The normal mean level of WIF-1 promoter region methylation was 2.3±5.4%. The women diagnosed with high-or low-grade squamous intraepithelial lesions were observed to have a more statistically significant than normal value (p < 0.0001), abnormal WIF-1 gene promoter region hypermethylation at mean frequencies of 29.2±17.2 and 54.8±18.7%, respectively. Conclusion. The findings suggest that the level of WIF-1 gene promoter region methylation significantly correlates with the stage of HPV-associated cervical disease. Thus, evaluation of the WIF-1 gene methylation status may be regarded as a potential diagnostic marker for cervical carcinogenesis and a predictive clinical marker during combination treatment for cervical cancer. © 2017, Bionika Media Ltd. All rights reserved

    WIF-1 gene methylation in cervical squamous intraepithelial lesions

    No full text
    Objective. To evaluate the diagnostic value of WIF-1 gene promoter region methylation in the development of cervical intraepithelial neoplasia. Subjects and methods. The investigation included 62 patients aged 18 to 55 years who had come to the Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, in the period February to August 2016 for examination and undergone liquid-based cytology, quantitative and qualitative tests for human papillomavirus (HPV), histological examination of cervical biopsy specimens, and extended colposcopy. Bisulfite sequencing was used to study the level of WIF-1 promoter methylation in 62 samples of cells taken from the cervical canal with a cervix brush. Results. The normal mean level of WIF-1 promoter region methylation was 2.3±5.4%. The women diagnosed with high-or low-grade squamous intraepithelial lesions were observed to have a more statistically significant than normal value (p < 0.0001), abnormal WIF-1 gene promoter region hypermethylation at mean frequencies of 29.2±17.2 and 54.8±18.7%, respectively. Conclusion. The findings suggest that the level of WIF-1 gene promoter region methylation significantly correlates with the stage of HPV-associated cervical disease. Thus, evaluation of the WIF-1 gene methylation status may be regarded as a potential diagnostic marker for cervical carcinogenesis and a predictive clinical marker during combination treatment for cervical cancer. © 2017, Bionika Media Ltd. All rights reserved
    corecore