1,325 research outputs found

    A statistical analysis of product prices in online markets

    Full text link
    We empirically investigate fluctuations in product prices in online markets by using a tick-by-tick price data collected from a Japanese price comparison site, and find some similarities and differences between product and asset prices. The average price of a product across e-retailers behaves almost like a random walk, although the probability of price increase/decrease is higher conditional on the multiple events of price increase/decrease. This is quite similar to the property reported by previous studies about asset prices. However, we fail to find a long memory property in the volatility of product price changes. Also, we find that the price change distribution for product prices is close to an exponential distribution, rather than a power law distribution. These two findings are in a sharp contrast with the previous results regarding asset prices. We propose an interpretation that these differences may stem from the absence of speculative activities in product markets; namely, e-retailers seldom repeat buy and sell of a product, unlike traders in asset markets.Comment: 5 pages, 5 figures, 1 table, proceedings of APFA

    Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol

    Get PDF
    International audienceMicrotubules exist in dynamic equilibrium, growing and shrinking by the addition or loss of tubulin dimers from the ends of protofilaments. The hydrolysis of GTP in b-tubulin destabilizes the microtubule lattice by increasing the curvature of protofilaments in the microtubule and putting strain on the lattice. The ob- servation that protofilament curvature depends on GTP hydrolysis suggests that microtubule destabil- izers and stabilizers work by modulating the curvature of the microtubule lattice itself. Indeed, the microtu- bule destabilizer MCAK has been shown to increase the curvature of protofilaments during depolymeriza- tion. Here, we show that the atomic force microscopy (AFM) of individual tubulin protofilaments provides sufficient resolution to allow the imaging of single pro- tofilaments in their native environment. By using this assay, we confirm previous results for the effects of GTP hydrolysis and MCAK on the conformation of pro- tofilaments. We go on to show that taxol stabilizes microtubules by straightening the GDP protofilament and slowing down the transition of protofilaments from straight to a curved configuration

    Cytoskeletal interactions at the nuclear envelope mediated by Nesprins

    Get PDF
    Nesprin-1 is a giant tail-anchored nuclear envelope protein composed of an N-terminal F-actin binding domain, a long linker region formed by multiple spectrin repeats and a C-terminal transmembrane domain. Based on this structure, it connects the nucleus to the actin cytoskeleton. Earlier reports had shown that Nesprin-1 binds to nuclear envelope proteins emerin and lamin through C-terminal spectrin repeats. These repeats can also self-associate. We focus on the N-terminal Nesprin-1 sequences and show that they interact with Nesprin-3, a further member of the Nesprin family, which connects the nucleus to the intermediate filament network. We show that upon ectopic expression of Nesprin-3 in COS7 cells, which are nearly devoid of Nesprin-3 in vitro, vimentin filaments are recruited to the nucleus and provide evidence for an F-actin interaction of Nesprin-3 in vitro. We propose that Nesprins through interactions amongst themselves and amongst the various Nesprins form a network around the nucleus and connect the nucleus to several cytoskeletal networks of the cell

    The low energy limit of the non-commutative Wess-Zumino model

    Get PDF
    The non-commutative Wess-Zumino model is used as a prototype for studying the low energy behaviour of a renormalizable non-commutative field theory. We start by deriving the potential mediating the fermion-fermion and boson-boson interactions in the non-relativistic regime. The quantum counterparts of these potentials are afflicted by irdering ambiguities but we show that there exists an ordering prescription which makes them hermitean. For space/space noncommutativity it turns out that Majorana fermions may be pictured as rods oriented perpendicularly to the direction of motion showing a lack of localituy, while bosons remain insensitive to the effects of noncommutativity. For time/space noncommutativity bosopns and fermions can be regarded as rods oriented along the direction of motion. For both cases of noncommutativity the scattering state described scattered waves, with at least one wave having negative time delay signalizing the underlying nonlocality. The superfield formulation of the model is used to compute the corresponding effective action in the one- and two-loop approximations. In the case of time/space noncommutativity, unitarity is violated in the relativistic regime. However, this does not preclude the existence of the unitary low energy limit.Comment: 14 pages, 2 figures, minor correction

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Ground state particle-particle correlations and double beta decay

    Get PDF
    A self-consistent formalism for the double beta decay of Fermi type is provided. The particle-particle channel of the two-body interaction is considered first in the mean field equations and then in the QRPA. The resulting approach is called the QRPA with a self-consistent mean field (QRPASMF). The mode provided by QRPASMF, does not collapse for any strength of the particle-particle interaction. The transition amplitude for double beta decay is almost insensitive to the variation of the particle-particle interaction. Comparing it with the result of the standard pnQRPA, it is smaller by a factor 6. The prediction for transition amplitude agrees quite well with the exact result. The present approach is the only one which produces a strong decrease of the amplitude and at the same time does not alter the stability of the ground state.Comment: 23 pages, 7 figure

    A Derivation of Three-Dimensional Inertial Transformations

    Get PDF
    The derivation of the transformations between inertial frames made by Mansouri and Sexl is generalised to three dimensions for an arbitrary direction of the velocity. Assuming lenght contraction and time dilation to have their relativistic values, a set of transformations kinematically equivalent to special relativity is obtained. The ``clock hypothesis'' allows the derivation to be extended to accelerated systems. A theory of inertial transformations maintaining an absolute simultaneity is shown to be the only one logically consistent with accelerated movements. Algebraic properties of these transformations are discussed. Keywords: special relativity, synchronization, one-way velocity of light, ether, clock hypothesis.Comment: 16 pages (A5), Latex, one figure, to be published in Found. Phys. Lett. (1997

    Field-Dependent Critical Current in Type-II Superconducting Strips: Combined Effect of Bulk Pinning and Geometrical Edge Barrier

    Full text link
    Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed striking dome-like magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles differ strongly from those in strips in which bulk pinning is dominant. In this paper we theoretically describe the current and field distributions of a superconducting strip under the combined influence of both a geometrical edge barrier and bulk pinning at the strip's critical current Ic, where a longitudinal voltage first appears. We calculate Ic and find its dependence upon a perpendicular applied magnetic field Ha. The behavior is governed by a parameter p, defined as the ratio of the bulk-pinning critical current Ip to the geometrical-barrier critical current Is0. We find that when p > 2/pi and Ip is field-independent, Ic vs Ha exhibits a plateau for small Ha, followed by the dependence Ic-Ip ~ 1/Ha in higher magnetic fields.Comment: 4 pages, 2 figures, Fig. 1 revised, submitted to Phys. Rev.

    Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons

    Get PDF
    Both in string field theory and in p-adic string theory the equations of motion involve infinite number of time derivatives. We argue that the initial value problem is qualitatively different from that obtained in the limit of many time derivatives in that the space of initial conditions becomes strongly constrained. We calculate the energy-momentum tensor and study in detail time dependent solutions representing tachyons rolling on the p-adic string theory potentials. For even potentials we find surprising small oscillations at the tachyon vacuum. These are not conventional physical states but rather anharmonic oscillations with a nontrivial frequency--amplitude relation. When the potentials are not even, small oscillatory solutions around the bottom must grow in amplitude without a bound. Open string field theory resembles this latter case, the tachyon rolls to the bottom and ever growing oscillations ensue. We discuss the significance of these results for the issues of emerging closed strings and tachyon matter.Comment: 46 pages, 14 figures, LaTeX. Replaced version: Minor typos corrected, some figures edited for clarit
    corecore