1,355 research outputs found

    A Convergent Iterative Solution of the Quantum Double-well Potential

    Full text link
    We present a new convergent iterative solution for the two lowest quantum wave functions ψev\psi_{ev} and ψod\psi_{od} of the Hamiltonian with a quartic double well potential VV in one dimension. By starting from a trial function, which is by itself the exact lowest even or odd eigenstate of a different Hamiltonian with a modified potential V+δVV+\delta V, we construct the Green's function for the modified potential. The true wave functions, ψev\psi_{ev} or ψod\psi_{od}, then satisfies a linear inhomogeneous integral equation, in which the inhomogeneous term is the trial function, and the kernel is the product of the Green's function times the sum of δV\delta V, the potential difference, and the corresponding energy shift. By iterating this equation we obtain successive approximations to the true wave function; furthermore, the approximate energy shift is also adjusted at each iteration so that the approximate wave function is well behaved everywhere. We are able to prove that this iterative procedure converges for both the energy and the wave function at all xx.Comment: 76 pages, Latex, no figure, 1 tabl

    Quantum Knizhnik-Zamolodchikov equation, generalized Razumov-Stroganov sum rules and extended Joseph polynomials

    Full text link
    We prove higher rank analogues of the Razumov--Stroganov sum rule for the groundstate of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the groundstate of the A_{k-1} IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\hat{sl(k)}) quantum Knizhnik--Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of fractional quantum Hall effect wave functions at filling fraction nu=1/k. In addition to the generalized Razumov--Stroganov point q=-e^{i pi/k+1}, another combinatorially interesting point is reached in the rational limit q -> -1, where we identify the solution with extended Joseph polynomials associated to the geometry of upper triangular matrices with vanishing k-th power.Comment: v3: misprint fixed in eq (2.1

    Higher-Order Corrections to Instantons

    Full text link
    The energy levels of the double-well potential receive, beyond perturbation theory, contributions which are non-analytic in the coupling strength; these are related to instanton effects. For example, the separation between the energies of odd- and even-parity states is given at leading order by the one-instanton contribution. However to determine the energies more accurately multi-instanton configurations have also to be taken into account. We investigate here the two-instanton contributions. First we calculate analytically higher-order corrections to multi-instanton effects. We then verify that the difference betweeen numerically determined energy eigenvalues, and the generalized Borel sum of the perturbation series can be described to very high accuracy by two-instanton contributions. We also calculate higher-order corrections to the leading factorial growth of the perturbative coefficients and show that these are consistent with analytic results for the two-instanton effect and with exact data for the first 200 perturbative coefficients.Comment: 7 pages, LaTe

    On the sign of kurtosis near the QCD critical point

    Full text link
    We point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is universally negative when the critical point is approached on the crossover side of the phase separation line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity, may become smaller than the value given by independent Poisson statistics. We discuss implications for the Beam Energy Scan program at RHIC.Comment: 4 pages, 2 figure

    External Momentum, Volume Effects, and the Nucleon Magnetic Moment

    Full text link
    We analyze the determination of volume effects for correlation functions that depend on an external momentum. As a specific example, we consider finite volume nucleon current correlators, and focus on the nucleon magnetic moment. Because the multipole decomposition relies on SO(3) rotational invariance, the structure of such finite volume corrections is unrelated to infinite volume multipole form factors. One can deduce volume corrections to the magnetic moment only when a zero-mode photon coupling vanishes, as occurs at next-to-leading order in heavy baryon chiral perturbation theory. To deduce such finite volume corrections, however, one must assume continuous momentum transfer. In practice, volume corrections with momentum transfer dependence are required to address the extraction of the magnetic moment, or other observables that arise in momentum dependent correlation functions. Additionally we shed some light on a puzzle concerning differences in lattice form factor data at equal values of momentum transfer squared.Comment: 21 pages, 5 figures; discussion in Sect. IV C expanded, Figs. now B&W friendl

    Absence of vortex condensation in a two dimensional fermionic XY model

    Full text link
    Motivated by a puzzle in the study of two dimensional lattice Quantum Electrodynamics with staggered fermions, we construct a two dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a non-compact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a KT transition.Comment: 5 pages, 5 figure

    The Renormalization Group and the Superconducting Susceptibility of a Fermi Liquid

    Full text link
    A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does {\it not}. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.Comment: 9 pages, 2 figure

    The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime

    Full text link
    An explicit expression for the spatial curve separating the region of ferroelectric order (`frozen' zone) from the disordered one (`temperate' zone) in the six-vertex model with domain wall boundary conditions in its anti-ferroelectric regime is obtained.Comment: 12 pages, 1 figur

    A renormalized large-n solution of the U(n) x U(n) linear sigma model in the broken symmetry phase

    Get PDF
    Dyson-Schwinger equations for the U(n) x U(n) symmetric matrix sigma model reformulated with two auxiliary fields in a background breaking the symmetry to U(n) are studied in the so-called bare vertex approximation. A large n solution is constructed under the supplementary assumption so that the scalar components are much heavier than the pseudoscalars. The renormalizability of the solution is investigated by explicit construction of the counterterms.Comment: RevTeX4, 14 pages, 2 figures. Version published in Phys. Rev.

    Conformal invariance in three-dimensional rotating turbulence

    Get PDF
    We examine three--dimensional turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-L\"owner evolution curves (SLE). The data stems from a run on a grid of 153631536^3 points, with Reynolds and Rossby numbers of respectively 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation, and examine the resulting z_\textrm{z} field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1\kappa=3.6\pm 0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales in this flow, and to the partial bi-dimensionalization of the flow because of rotation. We recover the value of κ\kappa with a heuristic argument and show that this value is consistent with several non-trivial SLE predictions.Comment: 4 pages, 3 figures, submitted to PR
    • …
    corecore