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István A. Kovács1, 2, ∗ and Ferenc Iglói2, 3, †
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The infinite disorder fixed point of the random transverse-field Ising model is expected to control
the critical behavior of a large class of random quantum and stochastic systems having an order
parameter with discrete symmetry. Here we study the model on the square lattice with a very
efficient numerical implementation of the strong disorder renormalization group method, which
makes us possible to treat finite samples of linear size up to L = 2048. We have calculated sample
dependent pseudo-critical points and studied their distribution, which is found to be characterized
by the same shift and width exponent: ν = 1.24(2). For different types of disorder the infinite
disorder fixed point is shown to be characterized by the same set of critical exponents, for which we
have obtained improved estimates: x = 0.982(15) and ψ = 0.48(2). We have also studied the scaling
behavior of the magnetization in the vicinity of the critical point as well as dynamical scaling in the
ordered and disordered Griffiths phases.

I. INTRODUCTION

The random transverse-field Ising (RTFI) model is the
prototype of random quantum systems1 having a quan-
tum critical point at zero temperature2. This model has
experimental realizations3 and there is a large amount of
theoretical work, which aims to clarify the properties of
the random critical point. It is expected that basic fea-
tures of the critical behavior are demonstrated in the one-
dimensional (1d) model and therefore most of the theo-
retical studies are performed in 1d. After early works by
McCoy and others4,5 Fisher6 has used a renormalization
group (RG) framework to obtain several presumably ex-
act results about its critical properties. It has been shown
that the critical properties of the 1d model are governed
by a so called infinite disorder fixed point (IDFP), in
which the strength of disorder grows without limit dur-
ing renormalization7. As a consequence disorder fluctu-
ations are dominated over quantum fluctuations and the
approximations used in the RG approach become exact at
the critical point. The IDFP of the RTFI model is shown
to govern the critical properties of another random quan-
tum systems having an order parameter with discrete
symmetry8,9. Furthermore this fixed point is found to
be isomorphic with that of several 1d stochastic models,
such as the Sinai walk10, the random contact process11

or the random exclusion process12.

Comparatively less results are available about the crit-
ical behavior of the RTFI model in higher dimensions,
which are almost exclusively restricted to 2d. By now
different numerical studies are in favor of the conclu-
sion, that also in 2d the critical behavior is controlled
by an IDFP. In this respect we mention different numeri-
cal implementations13–19 of the strong disorder renormal-
ization group (SDRG) method, as well quantum Monte
Carlo simulations19. These results are in agreement

with recent simulation studies of the 2d random contact
process20, which is expected to belong to the same univer-
sality class. Also the 2d random walk in a self-affine ran-
dom potential21 could be related to the 2d RTFI model.
As far as the numerical estimates of the critical exponents
in 2d are concerned, these contain quite large errors, for
a summary of the estimates see Ref.[18]. In simulation
studies these are connected to the logarithmically slow
critical relaxation, whereas in the SDRG method the er-
rors has mainly finite-size origin the typical linear size of
the largest systems being about L = 128− 160. Also the
type of disorder used in the calculations has an influence
on the error of the results. Due to these numerical limi-
tations there are no quantitative results in 3d, although
it is very probable that the random critical point is an
IDFP in this case, too13.

In this paper we are going to revisit the problem of
the critical behavior of the 2d RTFI model. Like other
studies we use numerical implementation of the SDRG
method, however we have developed a very efficient algo-
rithm, which make us possible to treat systems as large
as L = 2048. In this way the number of sites in our sam-
ples are several hundred larger, than in previous studies.
Comparing with earlier SDRG investigations our study
has several different features. i) We define and calculate
finite-size pseudo-critical points and study their distribu-
tion. ii) We obtain accurate estimates for the true criti-
cal point of the model, calculate effective, size-dependent
critical exponents and study their extrapolation. iii) We
consider different forms of the disorder and study the uni-
versality of the critical exponents as well as the scaling
functions. iv) We also study scaling outside the critical
point, as well as dynamical scaling in the disordered and
ordered Griffiths phases.

The structure of the rest of the paper is the following.
The model and the SDRG method is presented in Sec.
II. The basic features of the computer algorithm are dis-
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cussed in Sec. III. In Sec. IV we describe how finite-size
transition points are defined and calculated within the
frame of the SDRG method. We study their distribution
and analyze the shift of the mean value as well as the
width as a function of the size of the system. In Sec. V
critical exponents are extracted through finite-size scal-
ing and the scaling behavior outside the critical point is
analyzed. We also study dynamical scaling in the disor-
dered and in the ordered Griffiths phases. Our results
are discussed in the final section, whereas some details of
the computer algorithm are presented in the Appendix.

II. MODEL AND THE SDRG METHOD

A. Random transverse-field Ising model

We consider the RTFI model defined by the Hamilto-
nian:

H = −
∑

〈ij〉

Jijσ
x
i σ

x
j −

∑

i

hiσ
z
i (1)

in terms of the Pauli-matrices, σx,zi . Here i and j are sites
of a square lattice and the first sum runs over nearest
neighbors. The Jij couplings and the hi transverse fields
are independent random numbers, which are taken from
the distributions, p(J) and q(h), respectively.
Here we use two different type of distributions, which

have both the same uniform distribution of the couplings:

p(J) = Θ(J)Θ(1− J) , (2)

Θ(x) being the Heaviside step-function. For the ’box-h’
disorder we have:

q(h) =
1

hb
Θ(h)Θ(hb − h) , (3)

whereas for the ’fixed-h’ model we have a constant trans-
verse field:

q(h) = δ(hf − h) . (4)

In the following we use the logarithmic transverse-field
θ = lnhb or θ = lnhf to characterize the system. In
the thermodynamic limit, L → ∞, the system in Eq.(1)
displays a paramagnetic phase, for θ > θc, and a ferro-
magnetic phase, for θ < θc. In between there is a random
quantum critical point at θ = θc. The quantum control-
parameter is defined as δ = θ − θc.

B. Strong disorder renormalization group method

Here we use the SDRG method22, which has been in-
troduced by Ma, Dasgupta and Hu23 and later developed
by D. Fisher6 and others. During the method, the largest
local term in the Hamiltonian (which defines the energy-
scale, Ω, at the given RG step) is successively eliminated

and at the same time new terms are generated between
remaining sites by second-order perturbation method.
The procedure is sketched in Fig. 1 for a higher dimen-
sional system. If the largest term is a coupling (see the
right panel of Fig. 1), say Ω = Ji,j connecting sites i and
j, then the two sites involved form a spin cluster with an
effective moment µ′ = µi+ µj (initially µi = 1 ∀i) in the
presence of an effective transverse field: h′ ≈ hihj/Ji,j .
The renormalized value of the coupling of the cluster to a
site a is given by the ’maximum rule’ max [Ja,i, Ja,j ]. On
the other hand, if the largest local term is a transverse-
field (see the left panel of Fig. 1), say Ω = hi, then site
i is eliminated and effective couplings are generated be-
tween each pairs of spins, among the neighbors of i. If
a and b are neighboring spins to i, then the generated
coupling is given by: J ′

a,b ≈ Ja,iJb,i/hi. If the sites a and
b are already connected by a coupling, Ja,b 6= 0, than the
renormalized coupling is given by the ’maximum rule’ as
max [Ja,b, J

′
a,b]. The use of the maximum rule is justified

if the renormalized couplings have a very broad distri-
bution, which is indeed the case at the IDFP. We shall
see that with the maximum rule the numerical algorithm
can be simplified. At each step of the renormalization
one site is eliminated and the energy scale is continu-
ously lowered. For a finite system the renormalization
is stopped at the last site, where we keep the energy-
scale and the total moment as well as the structure of
the clusters.

J ′ = max(Jai, Jaj)

d

d

J′

Jad

a

a

i

Jij
hi

i

b c

a

b c

i

h′

J′

j

a

J ′ = JaiJbi/hi

Ω = JijΩ = hi

J̃ = max(Jad, JaiJdi/hi) h′ = hihj/Jij

J̃

FIG. 1: Illustration of the decimation steps of the strong
disorder renormalization group method in higher dimensions.

C. Scaling at the infinite disorder fixed point

At the IDFP the distribution of the effective couplings
and that of the transverse fields becomes broader and
broader during the renormalization7,22. Considering the
ratio of two effective terms in the Hamiltonian at a given
stage of the SDRG it will tend either to infinity or to
zero. This indicates that the disorder is infinitely strong
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and the perturbative results during the RG are exact.
Qualitatively the log-energy scale, lnΩ, scales with the
linear size of the system size, L:

ln (Ω0/Ω) ∼ Lψ , (5)

where Ω0 denotes a reference energy scale. The aver-
age spin-spin correlation function is defined as G(r) =

〈σxi σxi+r〉, where 〈. . . 〉 denotes the ground-state average

and (. . . ) stands for the averaging over quenched disor-
der. The asymptotic value of the correlation function
defines the magnetization, m, in the system:

lim
r→∞

G(r) = m2 , (6)

and m > 0 in the ferromagnetic phase and m = 0 in the
paramagnetic phase. The connected correlation function,
G̃(r) = G(r) − m2, in the vicinity of the critical point
behaves as:

G̃(r) ∼ r−2x exp(−r/ξ) , (7)

where the correlation length, ξ, is divergent at the critical
point as:

ξ ∼ |δ|−ν . (8)

Thus at δ = 0 there is a power-law decay of the corre-
lations, which is related to the fractal structure of the
spin clusters. Indeed, the average cluster moment, µ, is
related to the energy-scale, Ω as:

µ ∼ [ln(Ω0/Ω)]
φ
, (9)

and can be expressed also with the size:

µ ∼ Ldf . (10)

Here the fractal dimension of the cluster, df , is related
to the other exponents as:

df = φψ = d− x . (11)

In 1d the critical exponents are exactly known4,6:

ψ =
1

2
, φ =

√
5 + 1

2
, ν = 2, x =

3−
√
5

4
. (12)

III. IMPLEMENTATION OF THE SDRG

METHOD

A. Problems with the näıve implementation

The SDRG decimation rules are very simple and it is
straightforward to implement the method numerically. In
higher dimensions, however, the topology of the lattice
is changing during renormalization, which could result in
considerable increase of the computational time. More
dangerous steps in this respect are the h-decimations,

during which numerous new bonds are generated and as
a result sites with large number of links are formed. In
this way, after a näıve implementation of the method,
the system is transformed into an almost complete graph
and the subsequent h-decimations, generating new links
between practically all pair of sites, will be very slow. For
a system with N sites this algorithm would need O(N3)
time.
Using the maximum rule in the approach, however, of-

fers two ways to speed up the procedure24. First, one can
notice that the renormalization trajectory is not unique
in this case. There are terms in the Hamiltonian, which
are called as “local maxima” and which can be decimated
independently. Thus one should not follow the “decima-
tion of the largest term in each step” principle, instead we
are going to optimize the time of the renormalization tra-
jectory, which goes over in some order of the local max-
ima. The second consequence of the maximum rule is,
that a large number of bonds will never be participating
in the renormalization process. These latent bonds can
be deleted from the list of edges without consequences.
The latent bonds are in such a local environment, that
after decimating a nearby site or bond a stronger new
coupling is generated to the same edge, thus the original
bond disappears without participating in the renormal-
ization. Filtering out these irrelevant bonds will result in
a considerable improvement of the algorithm. In the fol-
lowing we discuss the properties of the local maxima and
the optimal RG trajectory as well as the main features
of the filtering process.

B. Local maxima and the optimal RG trajectory

A local maximum in the set of couplings and transverse
fields is such a term, which is larger (not smaller) than
any of its neighboring terms. Considering a coupling Jij
is a local maximum, provided Jij ≥ hi, Jij ≥ hj, and
Jij ≥ Jik, ∀k, as well as Jij ≥ Jlj , ∀l. Similarly a trans-
verse field, hi, is a local maximum, if hi ≥ Jij , ∀j. It
can be shown that the local maxima can be decimated
independently, the renormalization performed in any se-
quence gives the same final result.

C. Filtering out irrelevant bonds

The principle, that some bonds are irrelevant and
does not modify the renormalization procedure has been
first realized by Kawashima25. He has also suggested
a criterion to identify the irrelevant bonds which are
then deleted from the graph. This filtering procedure
as illustrated in Fig. 2 is used in a few 2d numerical
works15,16,18. In Appendix A we give the proper defini-
tion of the filtering criterion and prove it.
The use of the filtering criterion for a site with k neigh-

bors needs typically O(k3) time, since O(k2) triangles
have to be checked. However, the application of the fil-
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Before decimation After decimation After filtering

hi

FIG. 2: Illustration of the filtering criterion.

tering makes not too much reduction of the computa-
tional time, if the bond is in a general position, where
not too many new terms are generated after consecutive
RG steps. There are, however, bonds in “dangerous posi-
tions”, having at least one of the neighboring transverse
fields as a local maximum. Decimating this local max-
imum many new terms are generated and therefore the
use of prefiltering, which checks the bonds of the deci-
mated spin just before its decimation is very effective,
which typically needs only O(k2) time.

D. Basic steps in the numerical SDRG method

In order to obtain an efficient implementation of the
SDRG method we combine the optimal selection of the
RG trajectory with the filtering algorithm. In our
method we use the following steps.

1. We check all terms of the Hamiltonian and select
the local maxima. We make two lists, one for the
couplings and one for the transverse fields.

2. We decimate every coupling, which is on the list of
local maxima. In this step the order of the decima-
tion is arbitrary. After decimating the original cou-
plings new terms are generated, among which there
are new local maxima. We include those into the
list of local maxima and at the same time we dec-
imate the new couplings from this list. We repeat
this step, until the list of local maximum couplings
is empty.

3. If all or all but one the transverse fields are local
maxima we select the smallest one, delete all the
rest sites and END the iteration. Otherwise we se-
lect a transverse field from the list of local maxima
having a small (or the smallest) degree, which is de-
fined as the number of edges to the given site and
filter for the neighboring bonds. We decimate this
transverse field and check the generated new terms
for local maxima. If the list of local maximum cou-
plings is not empty, we go to step 2. Otherwise we
go to step 3.

Using the selection rule in the second part of step 3. will
ensure that the average degree of the sites will not be
large. In this way we prevent the formation of too con-
nected clusters, the decimation of which being time con-

suming. In step 3. making the filtering before decima-
tion (prefiltering) will ensure that the dangerous bonds
are deleted.
This algorithm in 2d works typically in O(L2 lnL) time

in a L × L system near the critical point. With our
method an L = 128 sample is renormalized in∼ 1 second,
whereas for L = 1024 the typical time is ∼ 1.5 minutes
(in a 2.4GHz processor).

IV. FINITE-SIZE CRITICAL POINTS

A. Scaling of pseudo-critical points

In the study of the critical behavior of random systems
it is very important to find an accurate estimate of the lo-
cation of the critical point. The quality of the estimate of
θc will influence the error of the calculated critical expo-
nents and scaling functions. In a random sample of linear
size, L, one can generally define finite-size pseudo-critical
points26–31, θc(L), which are usually given as the position
of the maximum of some physical quantity, which is di-
vergent in the thermodynamic limit (c.f. susceptibility)
at θc. The distribution of θc(L) provides important in-
formation about the scaling behavior at the fixed point
of the system28. In particular one studies the shift of the
average value, θc(L), which is expected to scale as:

∣

∣θc − θc(L)
∣

∣ ∼ L−1/νs , (13)

with the shift exponent, νs. Similarly, one measures
the width of the distribution, ∆θc(L), which behaves for
large-L as:

∆θc(L) ∼ L−1/νw , (14)

where νw denotes the width exponent. According to
renormalization group theory28 for a classical random
system with relevant disorder32 the critical behavior is
controlled by a conventional random fixed point, with
νs = νw = ν, where ν ≥ 2/d33 is the correlation length
critical exponent of the system.

B. Identification of pseudo-critical points

In a random quantum system one has to use another
methods to locate pseudo-critical points34. One method,
which is well suited to the SDRG approach is the dou-
bling method31, which has been used for chains34 and
for ladders18 of the RTFI model. In the doubling pro-
cedure in 1d (or quasi-1d) geometry one considers a
random sample (α) of length, L, and makes a dupli-
cated sample (2α) of length 2L by joining two copies
of (α). Using the SDRG method one calculates some
physical quantity (magnetization or gap) in the origi-
nal and in the replicated sample, which is denoted by
f(α,L) and f(2α, 2L), respectively, and study their ra-
tio, r(α,L) = f(2α, 2L)/f(α,L), as a function of the
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control parameter, θ. At θ = θc(α,L) this ratio has a
sudden jump, which is identified with the pseudo-critical
point of the sample. We note that the actual value of
θc(α,L) is practically independent of the physical quan-
tity we considered18, since this singularity is connected
to the topology of clusters produced by the SDRG ap-
proach.
Having this observation in mind we can generalize the

doubling method for two (and higher) dimensions. In 2d

we glue together two identical square-shaped samples at
the boundaries as indicated in Fig. 3. Then we renor-
malize the duplicated sample and calculate the structure
of the connected clusters, among which there might be
such, which have sites (in equivalent positions) in both
replicas. These sites are correlated and the fraction of
these correlated sites defines the correlation function be-
tween the replicas. By increasing the control parameter,
θ, the replica correlation function is decreasing and at a
well defined value, θc(L), it suddenly jumps to zero. We
consider θc(L) as the pseudo-critical point of the given
sample. It is easy to see that this definition is equiva-
lent to the previously used criterion in 1d, furthermore
it is straightforward to generalize it to three- and higher
dimensions.

S S’

FIG. 3: Illustration of the boundary conditions used in the
doubling procedure in higher dimensions.

C. Numerical results

1. Distribution of pseudo-critical points

We have calculated pseudo-critical points of square-
shaped samples for various linear sizes, L, which are ex-
pressed as L = 2l and L = 3 ∗ 2l−1 up to l = 10. Gener-
ally we have considered 4×104 realizations except for the
largest system, when we had at least 104 samples. The
distribution of the pseudo-critical points is shown in Fig.4
for both type of disorder. The mean value of the critical
points is considerably larger for box-h randomness and
also the width of the distribution - for the same value of
L - is larger in this case. (We note that the same trend

is seen in 1d, where θ
(b)
c = 0 and θ

(f)
c = −1.) Taking

into account the result in Eq.(13) the appropriate scal-
ing combination is y = (θc(L)−θc)L1/ν in terms of which
the scaled distributions, p̃(y), are shown in the insets of
Fig.4. Here using our final estimates in Eqs.(22) and (21)

we obtain excellent scaling collapse of the data points for
both type of randomness. The scaling curves for the two
different disorder approach the same standardized mas-
ter curve, which indicates that the fixed point of the RG
transformation is unique and (at least for strong enough
disorder) strongly attractive. The master curve is differ-
ent from that in 1d, which is Gaussian in this case34. In
2d the maximum of the curve is shifted to negative values
and the distribution is non-symmetric. We have calcu-
lated the percolation (or spanning) probability, Ppr , at
the critical point, which is given by the fraction of sam-
ples having finite replica correlation function at θc. It
can be expressed with the scaled distribution function as
Ppr =

∫∞

0
p̃(y)dy. Our estimate is:

Ppr = 0.149(2) , (15)

which is much smaller, than for standard 2d

percolation35. We have also calculated the skewness, s, of
the distribution, which has the value s = 0.19(3) for both
type of disorder. The asymmetric form of the distribu-
tion indicates that in 2d the topology of the renormalized
model is different from that in 1d. Samples having more
strongly connected clusters, thus a higher θc(L), have a
somewhat larger weight than the less strongly connected
clusters.

2. Shift of the finite-size critical points

For a fixed linear size, L, we have calculated the mean
value, θc(L), as well as the median θmed

c (L) of the pseudo-
critical points. Since the distribution is non-symmetric
these two characteristic values are not identical, however
both are expected to follow the scaling form in Eq.(13)
with the same value of the shift exponent, νs. This is
illustrated in Fig.5, in which θc − θc(L) as well as θc −
θmed
c (L) is shown as a function of L in a log-log scale for
both type of disorder. Having appropriate limiting values
for θc, see Eq.(22), the points in Fig.5 are asymptotically
very well on straight lines (both for the mean value and
for the median) having approximately the same slopes:
−1/νs ≈ −0.8.
To get more quantitative estimates we have calculated

effective, size dependent shift exponents which are de-
fined as:

1

νs(L)
= − 1

ln 2
ln

[

θc(2L)− θc(L)

θc(L)− θc(L/2)

]

, (16)

and similarly for the median values. These are shown in
the two insets of Fig.5 as a function of 1/L (upper in-
set for the mean) and lnL (lower inset for the median),
respectively. The exponents calculated from the mean
values show 1/L correction terms for both type of dis-
order, although with different signs. The extrapolated

values are 1/ν
(b)
s = 0.79(2) and 1/ν

(f)
s = 0.81(2), which

agree within the error of the calculation and leads the
estimate: 1/νs = 0.80(2). As seen in the lower inset of
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FIG. 4: (Color online) Distribution of the pseudo-critical
points, θc(L), for various lengths for box-h randomness (up-
per panel) and for fixed-h randomness (lower panel). In the
insets the scaled distributions are shown as a function of
y = (θc(L)− θc)L

1/ν , see the text.

Fig.5 the effective exponents calculated from the median
of the distribution have weaker 1/L dependence, instead
they show log-periodic-like variations. The estimates for
1/νs from these data are compatible with the previous
estimates obtained from the mean values, thus we can
write our estimate of the shift exponent:

νs = 1.25(3) . (17)

3. Scaling of the width of the pseudo-critical points

We have measured the standard deviation of the dis-
tribution of the pseudo-critical points, ∆θc(L), which are
shown in Fig. 6 as a function of the linear size, L, in
a log-log scale. In agreement with the scaling predic-
tion in Eq.(14) the points in Fig.6 are asymptotically on
straight lines, the slope of which is approximately the

10-3

10-2

10-1

100

 10  100  1000

θ c
-θ

c(
L)

L

f

b

 0.7

 0.8

 0.9

 10  100  1000

1/
ν s

L

f

b

 0.7

 0.8

 0.9

 1

 0  0.02  0.04

1/
ν s

1/L

f

b

FIG. 5: (Color online) Scaling of the shift of the finite-size
transition points, calculated from the mean value (+ for ’b’
and ×+ for ’f’), as well as from the median (× for ’b’ and
⊡ for ’f’) of the distribution, as a function of L in log-log
scale for both type of disorder. Estimates for θc are taken
from Eq.(22) and the straight lines indicating the asymptotic
behavior have the same slope: −1/νs ≈ −0.8. The effective
critical exponents calculated from Eq.(16) are shown in the
upper inset (for the mean) and in the lower inset (for the
median).

same for both types of disorder and can be well fitted as
−1/νw ≈ −0.8. As for the shift exponent in Sec.IVC2
we have measured effective, size-dependent critical expo-
nents, which are defined as:

1

νw(L)
= sinh−1

[

−∆θc(2L)−∆θc(L/2)

2∆θc(L)

]

1

ln 2
, (18)

and plotted in the inset of Fig.6 as a function of 1/L.

Extrapolating the effective exponents yields 1/ν
(b)
w =

0.805(10) and 1/ν
(f)
w = 0.811(10) for the box-h and the

fixed-h randomness, respectively. These values indeed
agree within the error of the calculation, thus we can
conclude that 1/νw = 0.808(10) and thus

νw = 1.24(2) . (19)

Comparing our estimates for the shift-exponent in
Eq.(17) with that of the width-exponent in Eq.(19) we
notice that they agree within the error of the method,
which corresponds to the renormalization group result
for a classical conventional random critical point28. In
order to make a direct check of the equivalence of the
two exponents we have formed the ratio:

α(L) =
θc − θc(L)

∆θc(L)
, (20)

which should approach an L-independent constant value
at the ’true’ critical point, θc, provided νs = νw. In
Fig.7 we have plotted the α(L) ratios as a function of
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lnL using different input values for the critical point, θc.
As one can see in this figure the L-dependence of α(L) is
very sensitive to the input value of θc, both for box-h and
fixed-h randomness, but at its right value the α(L) ratios
are approximately L independent. In this way we have
demonstrated, that the infinite disorder fixed point of the
2d RTFI model is characterized by one correlation-length
exponent, which is given by:

ν = 1.24(2) . (21)

Furthermore the ratio in Eq.(20) at the critical point has
the universal value: α = 1.15(2), which does not depend
on the form of the randomness. Finally, by this method
we have obtained accurate estimates for the ’true’ critical
points, which are given by:

θ(b)c = 1.6784(1)

θ(f)c = −0.17034(2) . (22)

We have checked, that the values in Eq.(22) are consis-
tent with other estimates, which can be obtained by ex-
trapolating the θc(L) data through Eq.(13), but the error
bars are smaller. For the box-h disorder the known esti-
mates are θ

(b)
c = 1.676(5), in Ref.[18] and θ

(b)
c = 1.680(5),

in Ref.[17], which are consistent with that in Eq.(22),
however the present value has much smaller uncertainty.
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FIG. 6: (Color online) Standard deviation of the distribu-
tion of the pseudo-critical points as a function of the size
in log-log plot for box-h (upper points) and fixed-h (lower
points) randomness. The dotted (blue) straight line has a
slope: 1/νw = −0.808 corresponding to the estimated value.
Inset: finite-size estimates for the exponent, 1/νw, plotted as
a function of 1/L.

V. SCALING AT THE CRITICAL POINT

Having accurate estimates of the critical points for
both types of randomness we are ready to study the crit-
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FIG. 7: (Color online) The ratio in Eq.(20) as a function of
lnL for different input values of the critical point, θc. At the
’true’ critical point α(L) is approximately L independent. Up-
per panel: box-h randomness and θc varies equidistantly be-
tween 1.6786 and 1.6782 from up to down; lower panel: fixed-
h randomness and θc varies equidistantly between −0.17030
and −0.17038 from up to down.

ical behavior of the system. In this respect we have con-
centrated our effort at the critical point, where we have
studied the distribution function of the magnetization, as
well as that of the (log-)gaps and calculated critical expo-
nents by finite-size scaling. At the critical point we have
considered finite systems up to a linear length L = 2048
and studied 4× 104 realizations for each sizes.
These investigations are supplemented with numerical

studies outside the critical point, both in the disordered
and in the ordered phases. For the magnetization we have
studied the scaling regime, defined as δL1/ν = O(1). To
obtain information about the dynamics of the system we
have studied the scaling behavior of the excitation ener-
gies both in the ordered and in the disordered Griffiths
phases and in this investigation we have not restricted
ourselves to the vicinity of the critical point. In the off-
critical region we studied random samples with fixed-h
randomness up to a linear length L = 512 and for 104

realizations.

A. Magnetization

1. Spin clusters

During renormalization effective spin clusters are
formed, which are than decimated at different energy
scales. We illustrate the cluster structure of a given sam-
ple at the critical point in the insets of Fig.8 in which
clusters having the same size are marked with the same
greyscale (color). Note that most of the clusters consist of
only one site and the large clusters are generally geomet-
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rically disconnected. We have also analyzed the distribu-
tion of the mass of the clusters, PL(µ), which follows the

scaling form: Ldf P̃ (µL−df ), df being the fractal dimen-
sion defined in Eq.(11). According to scaling theory35 the

distribution has a power-law tail, P̃ (u) ∼ u−τ , with an

exponent τ = 1+
d

df
. The scaling function for L = 1024

is shown in Fig. 8 in a log-log scale and indeed it has
a linear dependence with a slope τ = 2.9(1), which is
consistent with our estimate for df in Eq.(24).

FIG. 8: (Color online) Distribution of the mass of the spin
clusters in a log-log scale for the L = 1024 system at the
critical point calculated from 40000 samples. The straight line
indicating the asymptotic behavior has a slope −τ = −2.9, see
the text. In the two insets the cluster structure is illustrated
for the L = 64 system with fixed-h (upper inset) and box-h
(lower inset) randomness. The size of the clusters is increasing
with the greyscale (color) as indicated at the bottom of the
lower inset. The one-site clusters are white the points of the
largest cluster are black.

The magnetic properties of a given finite sample are
related to the magnetic moment of some effective spin
cluster, which appears at the last stages of the RG pro-
cedure. In principle one can define different types of such
spin clusters. i) The magnetization cluster has the small-
est effective transverse field, thus decimated at the lowest
energy scale. The moment of magnetization clusters are
denoted by µ̃. By definition the smallest possible value
of the magnetization cluster is µ̃min = 1, thus the corre-
sponding minimal magnetization at the disordered phase
is given by 1/Ld, i.e. it varies as a power-law of L. ii)
The correlation cluster with a moment µ̃corr is present in
the duplicated sample and involved in the replica corre-
lation function. By definition a correlation cluster exists
only for θ ≤ θc(L), i.e. below the pseudo-critical point
of the given sample. We have checked, that for large L if
a correlation cluster exists, it is almost always the mag-

netization cluster. iii) Finally we define also an energy

cluster in a sample, which is the magnetization cluster
for θ > θc(L), whereas for θ ≤ θc(L) it is the cluster dec-
imated before the correlation cluster. These clusters are
involved in the low-temperature or the small longitudinal
field properties of the system and will be considered in
dynamical scaling in Sec.VB.

2. Moment of magnetization clusters

We have calculated the distribution functions of the
moments of magnetization clusters for different lengths,
RL(µ̃), which are shown in Fig.9 for both types of
randomness. According to scaling theory RL(µ̃) =

Ldf R̃(µ̃L−df ) which is illustrated in the insets of Fig.9.
Up to a multiplicative constant the scaling functions,
R̃(ω), are identical for the two different randomness
and can be approximated with an exponential function:
R̃(ω) ∼ exp(−ω/ω∗), ω∗ being some randomness depen-
dent value.

3. Fractal dimension and critical exponent

In order to obtain an accurate estimate for the fractal
dimension, df , and for the magnetization exponent, x,
we have calculated average moments of the magnetiza-
tion clusters, µL, which are plotted in the inset of Fig.
10 as a function of L in a log-log scale. For both type
of randomness the points are asymptotically on straight
lines having the same slope, which is in agreement with
the scaling relation in Eq.(10). We have calculated effec-
tive, size-dependent fractal dimensions through:

df (L) = sinh−1

[

µ2L − µL/2

2µL

]

1

ln 2
, (23)

which are plotted in Fig. 10. As seen in this figure the ef-
fective fractal dimensions show no systematic trend with
L and the df (L) values spread around the same mean
value for both form of disorder. This mean value is taken
to our estimate for the fractal dimension:

df = 1.018(15) (24)

and from Eq.(11) we have for the magnetization expo-
nent:

x = 0.982(15) . (25)

4. Scaling of the magnetization

The magnetization is given by the asymptotic value of
the correlation function in Eq.(6), which definition can
be extended in a finite system in terms of the replica
correlation function as introduced in Sec.IVB. In a given
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FIG. 9: (Color online) Distribution of the moment of mag-
netization clusters for different lengths. Upper panel: box-h
randomness, lower panel: fixed-h randomness. The scaled
distributions are shown in the insets, where for the fractal
dimension the estimate in Eq.(24) is used.

sample of linear size L two spins at a distance r ∼ L
are correlated if both are in the same correlation cluster.
Consequently (the average value of) the magnetization

is given by: m(δ, L) =
µcorr
Ld

, where µcorr is the average

value of the mass of the correlation cluster as defined in
Sec.VA1. The magnetization as a function of δ is plotted
in Fig.11 for different finite systems. Using scaling theory
the magnetization in the vicinity of the critical point is
expected to behave as m(δ, L) = L−xm̃(δL1/ν). To test
this assumption in the inset of Fig.11 we have plotted
m(δ, L)Lx as a function of δL1/ν . Using the estimates for
the critical exponents in Eqs.(21) and (25) an excellent
scaling collapse of the data is obtained.
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FIG. 10: (Color online) Finite-size estimates for the fractal
dimension of the magnetization cluster in Eq.(23) as a func-
tion of ln(L) for the fixed-h (f) and the box-h (b) randomness.
The dotted horizontal line at df = 1.018 represents the mean
value and our estimate. In the inset the average moment of
the magnetization clusters are shown as a function of L in a
log-log scale for both type of randomness. The dotted straight
line has the slope df as extracted from the main figure.
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FIG. 11: (Color online) Magnetization as a function of the
control-parameter in the vicinity of the critical point for dif-
ferent finite systems. In the inset the scaled magnetization
m(δ,L)Lx is plotted as a function of δL1/ν .

B. Dynamical scaling

Here we study the properties of the low-energy exci-
tations, which are responsible for the dynamical behav-
ior of the system, such as the auto-correlation function
or the low-temperature and small-field behavior of the
susceptibility, specific heat, magnetization, etc. Such a
low-energy collective excitation of a random sample of
linear length L in the SDRG method is represented by
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a large spin cluster which is formed at the last steps of
the renormalization process and its excitation energy, ǫL,
is measured by the effective transverse field of the clus-
ter. These clusters are the so called energy clusters as
defined in Sec.VA 1. According to the scaling relation
in Eq.(5) at the critical point it is convenient to use the
log-variable: γL = − ln(ǫL). In the following we study
the distribution of γL at the critical point, as well as in
disordered and ordered Griffiths phases, and investigate
its scaling behavior with L. As far as dynamical prop-
erties are considered the SDRG method gives asymptot-
ically exact results also in the off-critical region, where
the relaxation time is divergent36. This is not the case
for static quantities due to the finite correlation length.

1. Critical point

At the critical point the energy clusters are decimated
either at the last step of the renormalization process,
which happens if the pseudo-critical point of the sam-
ple, θc(L), is smaller than θc, or at the last but one step,
if θc(L) > θc. The distribution of the log-excitation en-
ergies at the critical point for different sizes are shown
in Fig.12 for the two type of randomness. As seen in
this figure the distributions broaden with increasing L,
which is a clear signal of infinite-disorder scaling. Re-
ferring to Eq.(5) we introduce the scaling combination:
γ̃ = (γL − γ0)L

−ψ, in terms of which the distributions
collapse to the same curve provided the exponent is
ψ ≈ 0.48. This is illustrated in the insets of Fig.12. The
constant term, γ0, used in the fitting process is found to
be O(1) and has only a little influence on the value of the
exponent ψ. The scaling functions in the insets of Fig.12
have the same form for the two types of applied random-
ness and have a heavier tail than in 1d. The skewness
values at L = 1024 are s = 0.82(1) for 2d to be com-
pared with s = 0.64(1) in 1d.
In order to obtain more accurate estimate for the ex-

ponent ψ we have considered the mean value, γ(L), as
well as the standard deviation, ∆γ(L), of the distribu-
tions. We have formed the differences, d1(L), which
are d1(L) = γ(L) − γ(L/2) for the mean and d1(L) =
∆γ(L) − ∆γ(L/2) for the width of the distribution, re-
spectively and which are plotted in the inset of Fig.13 as
a function of L in a log-log plot. As seen in this figure
the points for the two quantities and for the two-type
of randomness are on parallel straight lines the slope of
which is compatible with ψ ≈ 0.48. In the next step we
have calculated finite-size effective exponents through the
definition:

ψ(L) =
1

ln 2
ln

[

d1(2L)

d1(L)

]

, (26)

which are plotted in Fig.13 as a function of L. As seen in
this figure there is some systematic trend of the points up
to L = 128−192, but for larger L-s there are only fluctu-
ations around a mean value what we use as an estimate
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FIG. 12: (Color online) Distribution of the log-excitation en-
ergies at the critical point for different finite systems. Upper
panel: box-h randomness; lower panel: fixed-h randomness.
In the insets scaling collapse of the distributions in terms of
γ̃ = (γ − γ0)L

−ψ are shown, with ψ = 0.48. The constant
is γ0 = −1.5(4) for box-h randomness and γ0 = −0.4(1) for
fixed-h randomness, respectively.

for the exponent:

ψ = 0.48(2) . (27)

This limiting value is the same for both type of ran-
domness and describes well the scaling behavior both the
mean value and the width of the distribution.

2. Disordered Griffiths phase

In the disordered Griffiths phase the energy clusters,
which are related to the low-energy excitations in a large
system are decimated at the last step of the renormal-
ization process. The scaling behavior of the low-energy
excitations here is different from that at the critical point.
We illustrate the scaling behavior of the distribution of
the log-excitation energies for different sizes in Fig.14 for
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FIG. 13: (Color online) Effective exponents ψ(L) as a func-
tion ln(L) calculated from the mean or from the width of the
distribution of the log-excitation energies for the two type
of randomness. Inset: finite differences of the mean and the
width of the log-excitation energy distribution as a function of
L in a log-log scale, see text. The slope of the dotted straight
line is given by ψ = 0.48.

the fixed-h randomness at a distance δ = 9.64 × 10−3

from the critical point. As seen in this figure the shape
of the (logarithm of the) distribution functions is very
similar for different L-s and the curves are merely shifted
with ln(L). This follows from the assumption, that the
typical value of the excitation energy in a system of size
L scales as a power-law:

ǫL ∼ L−z , (28)

z being the dynamical exponent, which is a continuous
function of the control parameter, δ > 037. Consequently
the appropriate scaling combination is:

γ̃ = γL − z ln(L)− γ0 , (29)

in terms of which the distribution functions have a scaling
collapse, provided the appropriate value of the dynami-
cal exponent is used. This is illustrated in the inset of
Fig.14. An estimate for the dynamical exponent from the
shift of the distributions, zsh(L), can be obtained from
the optimal collapse of the data points for sizes L/2 and
L. In Fig.14 we have d/zsh(512) = 2.3(2). If the low-
energy excitations in the system are localized then the
scaled distribution function is suggested38 to be given
by the Fréchet distribution known from extreme value
statistics39 in the form:

ln p(γ̃ − γ0) = −d
z
γ̃ − exp

(

−γ̃ d
z

)

+ ln(d/z) . (30)

Indeed the scaled distribution function in the inset of
Fig.14 is well described by the function in Eq.(30), where
only one fitting parameter, γ0 in Eq.(29) is used. We note

that for large γ̃ the tail of ln p(γ̃) is linear and its slope,
−d/zsl(L), can be used to obtain an independent esti-
mate for the dynamical exponent. The measured values
of d/zsl(L) are given in the caption of Fig.14 and these
are compatible with those calculated from the shift of the
distributions. There are, however finite-size corrections
for L < ξ, where the correlation length at the studied
value of δ is of the order of ξ = O(102).
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FIG. 14: (Color online) Distribution of the log-excitation en-
ergies in the disordered Griffiths-phase (at δ = 9.64 × 10−3)
in a log-lin scale for different sizes. The slopes of the
straight lines indicating the tail of the curves are d/z =
2.5(2), 2.1(2), 2.1(2) and 2.1(2), for L = 64, 128, 256 and
512, respectively. In the inset the scaled distributions are
shown in terms of the variable in Eq.(29) with d/z = 2.3(2),
which is well described by the Fréchet distribution (full line)
in Eq.(30).

We have repeated the previous calculation for several
values of δ in the disordered Griffiths phase and calcu-
lated estimates for the dynamical exponent both from the
shift of the distributions and from the slope of the tail.
These estimates obtained at different L-s are shown in a
log-log plot in Fig. 15. One can notice that the finite-size
corrections are stronger for small δ-s, where the correla-
tion length is comparatively larger. According to scaling
theory22 the dynamical exponent for small δ behaves as

d

z
≈ cδνψ (31)

and divergent at δ = 0. We have checked the rela-
tion in Eq.(31) and indeed in Fig.15 one can identify
an approximately linear part for δ ≤ 0.02 having a slope
≈ 0.6. This value is compatible with our previous esti-
mates νψ = 0.60(6) using results in Eqs.(21) and (27).
Closing this section we note that the dynamical ex-

ponent enters into the singularities of different physical
quantities. For example at low-temperature the suscep-
tibility behaves as: χ(T ) ∼ T d/z−1 and the specific heat
has the form Cv ∼ T d/z. More details about the scaling
relations in the Griffiths phase can be found in22,40.



12

 1

 2

 3

 4
 5
 6

10-3 3 10-3 10-2 3 10-2

2/
z

δ

tail L=128
tail L=256
tail L=512
shift L=128
shift L=256
shift L=512
c δ0.6

 0

 1

 2

 3

 4

 5

 0 10-2 2 10-2

2/
z

δ

FIG. 15: (Color online) Estimates for 2/z at different points
of the disordered Griffiths phase in a log-log plot. The esti-
mates are calculated either from the shift of the distributions
or from their tail at various finite sizes. The straight line with
a slope 0.6 indicates the asymptotic behavior as given in Eq.
(31). In the inset data for the largest system, L = 512, are
compared with the scaling curve in Eq. (31) with c = 36.5 in
linear plot.

3. Ordered Griffiths-phase

In the ordered phase of a large system with δ < 0
there is an infinite magnetization cluster, which is deci-
mated at the last step of the renormalization procedure.
The low-energy excitations of the system here are re-
lated to the energy cluster, which has a finite extent and
which is decimated just before the magnetization clus-
ter. The distribution of the log-excitation energies for
different sizes are shown in Fig.16 for the fixed-h ran-
domness at δ = −1.916 × 10−2. Comparing the distri-
butions with that of the disordered Griffiths phase in
Fig.14 one can notice that in both cases the distribu-
tions are not broaden but shifted with an L-dependent
amount. There are, however, several differences in the
two figures. In the ordered Griffiths phase the finite-size
effects are stronger, therefore we went up to L = 1024.
More importantly, the shift of the distributions in the
ordered Griffiths phase is slower than linear with ln(L).
This is connected to the scaling result, that the typical
value of the excitation energy, ǫL, is related to the size of

the system as: ln ǫL ∼ − ln1/d(L), thus the appropriate
scaling combination is41

γ̃ = γL −A ln1/d(L)− γ0 , (32)

which is to be compared with Eq.(29). Indeed using the
variable in Eq.(32) the distributions show a scaling col-
lapse, as illustrated in the inset of Fig.16.
Also the shape of the scaled distributions are different

in the two Griffiths phases. In the disordered Griffiths
phase the distributions in the inset of Fig.14 approach
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FIG. 16: (Color online) Distribution of the log-excitation
energies in the ordered Griffiths-phase (at δ = −1.916×10−2)
in a log-lin scale for different sizes. In the inset the scaled
distributions are shown in terms of the variable in Eq.(32).

a linear asymptotics from above, on the contrary in the
ordered Griffiths phase in the inset of Fig.16 the points
bend below a straight line. This is compatible with the
scaling result, that asymptotically41:

ln p(γ̃) ∼ −γ̃d . (33)

Our data in the inset of Fig.16 are still not in the asymp-
totic regime but the tail of the distribution clearly de-
creases faster than linear for the large sizes.

VI. DISCUSSION

The concept of infinite disorder fixed point has been
introduced quite recently7 and its basic properties have
been demonstrated in partially exact calculations in
different one-dimensional random quantum4–6,8,9 and
stochastic systems10–12. In higher dimensions, in partic-
ular in two dimensions the calculations are numerical and
have only limited accuracy13–19. In the present paper we
have considered the prototypical model in 2d having an
IDFP the random transverse-field Ising model and stud-
ied its critical properties by a numerical implementation
of the SDRG approach. As follows from the concept of
IDFP our numerical results are expected to be asymp-
totically exact.
In our approach we have used a very efficient compu-

tational algorithm which made us possible to treat sam-
ples which are ten-times larger in linear size, compared
with previous calculations. In this way we could reduce
the effect of finite-size corrections and could also study
off-critical properties, such as scaling functions and dy-
namical scaling in the disordered and ordered Griffiths
phases.
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The main results of our investigations are the following.
We have extended the finite-size scaling study for pseudo-
critical points and from their distribution we have ob-
tained precise estimate for the correlation length critical
exponent, which has been shown to govern both the shift
and the width of the distribution. Using different types of
randomness we have demonstrated that the IDFP is uni-
versal, the critical exponents as well as the critical scaling
functions are independent of the randomness used in the
calculation. We have also studied cross-over phenomena
with respect of the linear size of the system as well as the
type of randomness used in the calculation. The some-
times large errors and deviations between the results of
previous numerical studies are presumably due to cross-
over effects. This can be seen, e.g. in Fig.13 where the
estimates of the exponent ψ have strong finite-size as well
as randomness-type dependence.
As a result of the larger samples and the good statis-

tics of the numerical data we have obtained accurate esti-
mates for the critical exponents and studied - at the first
time - the behavior of scaling functions, both at the criti-
cal point and in the finite-size scaling limit in the vicinity
of the critical point. We have also extended our investi-
gations to the disordered and the ordered Griffiths phases
and have checked various predictions of phenomenologi-
cal scaling theory.
Comparing the critical behavior in 1d to that in 2d we

have qualitatively similar results, but there are also im-
portant differences. First of all the actual values of the
critical exponents as well as the form of the scaling func-
tions are different. Scaling in the ordered Griffiths-phase,
which involves powers of d in Eqs.(32) and (33) however,
is also qualitatively different. One particular feature of
the model in 1d is self-duality, which could be the reason
why in 1d the distribution of the pseudo-critical points
involves different shift and mean exponents34.
Our calculations can be extended to several directions.

One possibility is to study the entanglement properties
of the model42 which can be well performed within the
frame of the SDRG approach43. At present conflict-
ing theoretical predictions are available about the finite-
size dependence of the critical entanglement entropy16,17,
which could be possibly clarified by using larger systems
in the calculation. A second promising direction of appli-
cation of our approach is to consider higher dimensional
systems. At present even in three dimensions only the
existence of infinite disorder scaling is demonstrated13,
but no estimates are known about the critical exponents.
In four and higher dimensions no numerical studies have
been performed so far. Studies in these directions are in
progress.
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Appendix A: Filtering out irrelevant bonds

In the SDRG procedure if the maximum rule is applied
several bonds are irrelevant, which means that they can
be deleted without modifying the final result of the renor-
malization.

1. Condition for a bond to be irrelevant

Let us consider a bond with a log-coupling κij = ln Jij
between sites i and j and consider such nearest neighbor
points, one of those is denoted by k in Fig. 17, which
has bonds both to i and j of strength κik and κjk, re-
spectively. The triangle (i, j, k) is called the ’majorating
triangle’ of the (i, j) bond if κij is the smallest bond in the
triangle, and it is also smaller, than the potentially gen-
erated new bond: κ′ij = κik + κjk − θk, where θk = lnhk
is the log-transverse field at site k. If such a majorating
triangle exists then the bond is irrelevant.

2. Proof of the filtering criterion

For the proof it is enough to consider such a decimation
step during which the majorating triangle collapses and
we follow also the evolution of the parameters in another
triangle, (i, j, l), which is not necessarily a majorating
one. The maximal log-parameter in the four-site system
in Fig. 17 is denoted by ω. We note that during renor-
malization the log-transverse fields can not increase, thus
the change of their values are unimportant in the proof.

a. Bond decimation

The (i, j) bond is not the largest one, since it has a
majorating triangle, so that for the position of the largest
bond we have three different cases. i) Largest bond in the
majorating triangle: ω = κik (or κjk). The spins i and k
fuse into a new effective spin, which is connected to the
spin j with a coupling of κ′ = max (κij , κjk) = κjk, thus,
κij simply disappears. ii) Largest bond in the another
triangle: ω = κjl (or κil). The j and l spins fuse into
a new effective spin. If κij < κil, than the value of κij
simply disappears, otherwise its value does not change.
Similarly, the value of κik does not change, while κjk is
replaced by κ′jk = max (κjk, κkl) ≥ κjk. Taken all round,

the new (i, j, k) triangle is a majorating triangle of the
(i, j) bond. iii) Largest bond between the two triangles:
ω = κkl. The spins k and l fuse and there is one triangle
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FIG. 17: Illustration of the neighborhood of an irrelevant
bond (i, j) having a majorating triangle (i, j, k). The values
of the log-couplings and the log-transverse fields are also in-
dicated, see the text.

left. Here the value of κij does not change and the new
triangle is a majorating one of the (i, j) bond.

b. Site decimation

We should consider two different cases: i) ω = θk:
κ′ij = κik + κjk − θk > κij due to our assumptions, thus
κij disappears without affecting the results. ii) ω = θi (or
θj analogously): κ′jk = κij + κik − θi ≤ κij < κjk, thus
this coupling is unaffected by the κij coupling. How-
ever, in principle the other newly generated bonds are
not irrelevant, e.g. κ′jl < κjl is not always fulfilled. Due

to this, the effect of the majorated (i, j) edge will not
certainly disappear after one single decimation step, in
which it is involved. Moreover, a lot of new couplings can
be generated occasionally, if the bond lies in a ’dangerous
position’.

c. Completing the proof

Here we show, that the newly generated coupling in
the (l, j, k) triangle, κ′jl, is always majorated by this tri-

angle. The two neighboring couplings of κ′jl are κjk (due

to the fact, that κ′jk < κjk), and max (κkl, κ
′
kl), where

κ′kl = κik + κil − θi. κ
′
jl is smaller than these neighbor-

ing couplings, namely κ′jl < κij < κjk and κ′kl − κ′jl =

κik − κij > 0. From the latter follows, that κ′jl < κ′kl,

which can not be greater, than max (κkl, κ
′
kl) correspond-

ing to the new value of the coupling between the k and l
spins. Now we see, that the κ′jl coupling is majorated by

the (l, j, k) triangle, if κ′jl is smaller, than the generated

coupling κ′′jl ≡ max (κkl, κ
′
kl)+κjk−θk, which is obtained

by decimating the transverse field at k. Let us consider
their difference: κ′′jl−κ′jl ≥ κ′kl+κjk−θk−κij−κil+θi =
κik+κjk−θk−κij = κ′ij−κij > 0. Thus the κ′jl coupling

is always majorated by the (l, j, k) triangle.

Let us summarize our findings. If the bond (i, j) has
a majorating triangle, it can not be decimated directly.
Decimating in its neighborhood either this bond disap-
pears or new couplings are generated, the value of which
involves κij . These new couplings, however, are always
majorated by a triangle, thus they are never decimated
during the renormalization process. Consequently the
value of κij does not influence the result of the renormal-
ization.
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