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We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework

of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points,

with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of

the vorticity in the direction parallel to that of rotation and examine the resulting h!ziz field for scaling

properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence

evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian

diffusivity � ¼ 3:6� 0:1. SLE behavior is related to the self-similarity of the direct cascade of energy to

small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value

of � with a heuristic argument and show that this is consistent with several nontrivial SLE predictions.
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Self-similarity in physics is a common phenomenon,
with identical properties of a system when considered at
different scales. Rugged coastlines, fractals, traffic in com-
puter networks, growth processes, geometrical properties
of interfaces, phase transitions in critical phenomena such
as in the Ising model for spontaneous magnetization, and
classical and quantum field theory often display power-law
scaling of some variable, and such scaling exponents have
been the object of intense investigations resulting in the
finding of broad classes of universality.

A property stronger than scale invariance is conformal
invariance, under transformations that preserve angles with
rescaling that depends on position; it is difficult to test, since
it implies the need to investigate the scaling of multipoint
high-order correlation functions. However, recent develop-
ments by Schramm, in particular (see, e.g., [1] and refer-
ences therein), allow in some cases for a statistical
characterization of conformal invariance. Such scaling
laws can be related to Brownian motion (which is scale
invariant and conformal in two dimensions) in what is now
named Schramm-Löwner evolution (SLE), with as the sole
parameter the diffusivity � associated with this Brownian
motion. In this approach, the driving of the Löwner equation
[Eq. (2) below] is stochastic, with a conformal map allow-
ing us to go from static (fixed-time) two-dimensional (2D)
paths in the complex plane C to ‘‘dynamic’’ one-
dimensional (1D) motions. In other words, it allows one
to describe paths in C by a succession (convolution)
of conformal maps obeying a differential equation.
Schramm’s theorem (see, e.g., [1]) states that if and only
if the driving is Brownian is the measure of the 2D paths
conformally invariant.

Two-dimensional turbulence differs in many ways from
the three-dimensional (3D) case because of the presence of
an extra invariant in the absence of viscosity, the enstrophy

S ¼ hjr � uj2=2i, leading to an inverse cascade of energy
E ¼ hjuj2=2i to large scales [2], with u the velocity field. It
was shown in Ref. [3] that this inverse cascade, which is
known to lack intermittency and is self-similar, can be
viewed in the framework of conformal invariance when
examining zero-vorticity lines; it belongs to the universal-
ity class with � ¼ 8=3 (the enstrophy cascade to small
scales, however, is not SLE [3]). These results stem from
direct numerical simulations (DNS) on grids of up to
16 3842 points, with forcing at intermediate wave number
kF=kmin � 100, with kmin ¼ 2�=L0, L0 being the size of
the vessel.
In the case of 3D Navier-Stokes (NS) incompressible

flows at high Reynolds numbers, the cascade of energy to
small scales is not self-similar, because of the presence of
strong vorticity gradients. Only one time scale is present,
the eddy turnover time �NL � ‘=u‘, with u‘ the velocity
at scale ‘, and dimensional analysis gives an energy spec-

trum EðkÞ / k�5=3 that is quite close to observed spectra in
the atmosphere or in laboratory experiments. However,
when introducing solid-body rotation � with inertial
time �� � 1=�, EðkÞ steepens and its spectral index can
be recovered by taking into account the weakening of
nonlinear interactions due to the inertial waves [4]. In
this case, self-similarity and Gaussianity in the 3D direct
energy cascade were found recently both in the laboratory
[5,6] and in DNS [7,8], more clearly so in the presence of
helicity, i.e., velocity-vorticity correlations [9].
Since rotating flows tend to become quasi-2D (but not

strictly 2D, as our results will confirm) when strong rota-
tion is imposed, the question thus arises as to whether
SLE can be identified in such flows. To this end, we
examine the large data set produced in a run of rotating
helical turbulence on a grid of 15363 points, with L0 ¼ 2�
and forcing at kF ¼ 7; an inverse cascade of energy to
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large scales (with constant negative flux) is observed but
with too little extent in wave number to allow for a SLE
analysis similar to that performed in Ref. [3] for the 2D NS
inverse cascade. We concentrate instead on the direct
energy cascade to small scales (with constant and positive
flux; see Fig. 9 in [8]) and analyzed for its classical
statistical properties and structures in [9]. A pseudospectral
code with periodic boundary conditions was used, with at
the onset of the inverse cascade a Reynolds number
Re ¼ U02�=½�kF� � 5100 (with � the viscosity) and the
Rossby number Ro ¼ U0kF=½2��� � 0:06; U0 � 1 is
the rms velocity. We integrated the 3D NS equations in
the rotating frame for an incompressible flow (r � u ¼ 0);
with ! ¼ r� u the vorticity, they read

@u

@t
þ!� uþ 2�� u ¼ �rP þ �r2uþ F; (1)

P is the total pressure modified by the centrifugal term,
and F is a helical Arn’old-Beltrami-Childress forcing [7,8].
The rotation is imposed in the vertical (z) direction, with
� ¼ 9ẑ. The code is fully parallelized and uses the 2=3
dealiasing rule, and the temporal scheme is a second-order
Runge-Kutta. Note that in 3D, besides energy, total helicity
H ¼ hu �!i is also an ideal invariant [10].

The procedure.—Considering the symmetries of Eq. (1),
we construct a 2D field by averaging in the vertical direc-
tion the parallel component of vorticity, which we denote
hereafter h!ziz; we also compute a transverse average
h!ziy to compare with. Starting from an arbitrary line,

say, the x axis, we explore isocontours of zero field as
trajectories in the 2D plane that keep the positive field to
their right. The direction along the trajectories is parame-
trized by a ‘‘driving time’’ �. The path is stopped whenever
it returns to the initial axis. The end point is then sent to
infinity through a holomorphic (Möbius) transformation as
in Ref. [3], with a cutoff � chosen to be such that the tip of
the curve is within a small arbitrary distance of the chosen
axis; results are insensitive to the choice of � in a range of
1–10 pixels and agree as well with a procedure in which the
Möbius conformal mapping is not applied. Note that,
because of periodicity, the procedure is not affected by
the boundaries and that all trajectories are renormalized
to �max ¼ 1.

We have shown numerically for this flow the existence
of scale invariance for the direct energy cascade and the
Gaussianity of the velocity in [9] (see Figs. 7 and 8), also
examining anisotropy at different times by using a
SOð2Þ � R decomposition (see Figs. 2 and 3 in [9] for
the actual scaling ranges). We now probe the conformal
invariance of these 2D curves viewed as paths in the upper
complex plane; the paths are encoded in a ‘‘driving
function’’ �ð�Þ obtained through the chordal Löwner
equation below, with g�ð�Þ (� 2 C) a conformal map
(see, e.g., [11]):

@�g�ð�Þ ¼ 2

g�ð�Þ � �ð�Þ ; (2)

�ð�Þ is the unknown 1D real continuous stochastic driving
function for the path. In order to estimate �ð�Þ numerically,
we use the zipper algorithm with vertical slits [12]. Then

ga;��ð�Þ ¼ aþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð� � aÞ2 þ 4���p

conformally maps the

upper plane minus the vertical slit in C [ða; 0Þ; ða; 2 ffiffiffi

�
p Þ]

into the upper plane: The zipper algorithm gradually zips
the whole path onto the x axis by using the composition of
functions ga;��ð�Þ for different ��. We thus transform the

erratic nodal line in the plane (the inset in Fig. 1, described
below) into an unknown motion along the real axis, �ð�Þ.
To test for conformal invariance, we therefore must ask:

Is �ð�Þ a Gaussian process? Does it correspond to a
Brownian motion? And if so, what is its diffusivity?
To answer the first question, one can use the classical
Kolmogorov-Smirnov (KS) test and check (i) whether its
pKS value is above a given threshold for a wide range of
driving times � and (ii) whether the steps in this motion are
independent. When both tests are favorable, we then con-
sider the scaling of the variance of �ð�Þ. If the scaling is
reasonably linear with �, we will conclude that the set of
driving functions likely stems from a Brownian process
and, hence, that the vorticity isolines obtained as indicated
above are likely to be conformally invariant. The linear
scaling also gives us the diffusivity �, which describes
entirely the statistics of the SLE process.
Results.—We now apply the procedure to the 15363

DNS data. After performing the average (either in z or
in y), fifteen temporal snapshots are analyzed, separated by
approximately one eddy turnover time. The resulting data
set has in excess of 3:5� 107 points for each averaging
direction. In Fig. 1 is given a snapshot of j!ðxÞj in 3D, a

FIG. 1 (color online). Perspective volume rendering of vortic-
ity intensity in a snapshot of the flow. The slice in the middle of
the box shows a 2D cut of!z, while the slice at the bottom shows
the same field averaged vertically. The inset is h!ziz, with
superimposed nodal paths, the traversing ones (top to bottom,
red online) being discarded from the analysis.
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2D slice of !zðxÞ (in the middle of the box), and the same
field component when vertically averaged, h!ziz (bottom
slice). The flow displays features of both 2D and 3D
behavior [7,9]; prominent are tangles of vortex filaments,
loosely organized parallel to �ẑ, and Beltrami core vorti-
ces, smooth long-lived helical columns. The inset shows
h!ziz face-on with a few examples of superimposed paths
that are analyzed below, noting that we discard the travers-
ing paths, keeping only returning paths (loops at the top,
blue online), as done in Refs. [3,13].

Figure 2 summarizes the analysis, for!z averaged either
parallel (full circle) or transverse (y, full triangle) to �ẑ.
Since a barely resolved inverse cascade of energy develops
in the DNS between the forcing scale and the box size, we
also performed the analysis in a data set in which !z was
filtered so as to preserve only scales smaller than the
driving scale: For ‘ < 2�=10, the results are now dis-
played with open symbols. Figure 2 (top) gives the pKS

values of the KS test with abscissa � in the log scale.
The value pKS � 10�5 for h!ziy (triangles) shows that the
transverse y-averaged field is not Gaussian, and we shall
not analyze further such y-averaged data. On the other
hand, pKS � 0:6 for most values of � for h!ziz (circles).
These opposite results imply that our test can eliminate
non-Gaussian behavior and that, due to the anisotropy of
the flow, only parallel z averaging may lead to conformal

invariance. To confirm the Gaussianity of the process with
parallel averaging, we show in the inset the probability
distribution functions (PDFs) for two driving times �1 and
�2; the dotted line is a Gaussian with zero mean and unit
variance [14]. Note that Gaussianity also implies indepen-
dence of increments (we show the evolution of the PDFs
for different � in Fig. 2).
Figure 2 (bottom) gives the variance of the motion

normalized by � with error bars for the data sets that are
not discarded by the KS test. The resulting diffusivity
for the associated Brownian motion is h�2

�i=� ¼ � ¼
3:6� 0:1 for the full data set (full circles) and �¼
3:5�0:2 for the data in which the scales comparable to
or larger than the forcing have been filtered out (open
circles). The inset shows the actual scaling of variance
with driving time, in log-log coordinates, with the dashed
line for linear variation. Note that, within error bars, the
results are insensitive to whether or not we filter the
numerical data (keeping only Fourier modes k > 10,
thereby making sure we restrict the data to the direct
cascade of energy).
Finally, we confirm the scaling we found for � by

examining some of the predictions on statistical properties
of nodal lines of h!ziz that can be made by using the SLE
framework (see [1]). A classical one concerns the fractal
dimension of the nodal lines, but less trivial features pre-
dicted by SLE include, for instance, the so-called ‘‘winding
angle’’ or the gyration radius. The winding angle predic-
tion states that the probability Pleft of a SLE line to leave a
point z0 ¼ �ei	 in C to its left depends only on � and 	
following a known expression [1]. Figure 3 shows the
results obtained from our data sets as a function of 	, as
well as the mean gyration radius of the nodal lines as a
function of their length in pixels in the top-right inset.
In both cases, the SLE predictions for � ¼ 3:6, given
with the dashed lines, appear convincing.
We thus conclude that our analysis identifies conformal

invariance for nodal lines of the vertical component of the

FIG. 2 (color online). SLE analysis for h!ziz (circles) and
h!ziy (triangles). Filled symbols comprise the full data, and

open symbols correspond to paths in the data set filtered at
‘ < 2�=10. Driving time � is in log coordinates. Top: KS test;
inset: PDFs of driving function increments for h!ziz for �1 and
�2 as marked on the � axis; the dashed line indicates a Gaussian.
Bottom: Diffusivity � for h!ziz with error bars; inset: scaling of
variance for h!ziz, with the dashed line indicating linear varia-
tion with �.

FIG. 3 (color online). Winding angle probability Pleft as a
function of the angle 	, as illustrated by the sketch at the bottom.
Inset: Mean gyration radius D of nodal lines as a function of the
number of pixels N. Dashed lines: Theoretical predictions for
�S ¼ 3:6; open and filled circles as in Fig. 2.
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vorticity field when averaging parallel to the direction of
rotation and fails to identify such invariance in its trans-
verse average. For the parallel-averaged vertical vorticity,
the associated diffusivity is � � 3:6� 0:1. Moreover, SLE
predictions for this value of � agree well with our results. It
is also important to remark that our analysis could fail to
reject the hypothesis of Gaussianity if data were insuffi-
ciently resolved; this is not surprising since it is hard to
distinguish SLE behavior from something close to SLE
[12]. In spite of these limitations, the data analyzed here up
to the spatial resolution considered are found to be con-
sistent with SLE behavior.

Discussion.—Rotating helical turbulence may be per-
haps the first documented case presenting SLE scaling for
three-dimensional flows undergoing a direct cascade of
energy and of helicity to small scales, when properly
averaged in the direction of rotation. Conformal invariance
is a strong local property and allows determination of a
series of scaling laws, as exemplified in Refs. [3,13] for 2D
NS and other related 2D cases such as surface quasigeo-
strophic flows and as found here as well. SLE obtains
convincingly for the vertical component of the vorticity
averaged along the direction of rotation, with � � 3:6,
close (but not identical) to the value identified in
Ref. [13] for surface quasigeostrophic flows for an inverse
cascade. Note that anisotropy of this 3D rotating flow must
play an essential role, since the direct cascade of enstrophy
in strictly 2D NS is not SLE as shown in Ref. [3].

The fractal dimension DF 	 2 of SLE curves can be
related to � [3], as well as to the cancellation exponent �C

which measures how fast a field changes sign [15]. With d
the dimension of space, we have DF¼1þ�=8¼d�2�C.
It is straightforward to relate the diffusivity of the SLE
process � and the exponent e of the energy spectrum,
EðkÞ � k�e, under the assumption of self-similarity: �p ¼
aSp; �p are the exponents of the pth-order longitudinal

structure functions of the velocity field, h�uLðrÞpi � r�p ,
where �uL is the variation of the velocity projected along
the direction of the spatial increment r. We use that
�C ¼ �1 ¼ aS, �2 ¼ e� 1 for 1< e 	 3 and that dimen-
sional analysis for a given dynamics gives aS. Then,

�

8
¼ d� e ¼ d� 1� 2aS: (3)

Hence, the value of � is quite sensitive to e or aS [16].
For 2D NS, aS ¼ 1=3 and � ¼ 8=3, as found in Ref. [3]
(with dual value �
 ¼ 6). For rotating helical turbulence,
aS ¼ 3=4, by using a phenomenological model based on
three assumptions [7,9]: wave-modulated energy spectrum,
domination of the helicity cascade to small scales, and
maximal helicity. The first hypothesis allows us to write
that the transfer of energy to small scale is slowed down in
proportion �NL=��; the second one stems from the fact
that, with the energy undergoing an inverse cascade to
large scale, little energy is left to feed the small scales,
whereas helicity possesses only a small-scale cascade and

thus is the determining factor in this direct cascade. These
two concepts lead to eþ h ¼ 4, with helicity spectrum
HðkÞ � k�h. The third assumption gives h ¼ e� 1 and
thus �p ¼ 3p=4, a value reported experimentally as well

[6,16]. From Eq. (3), we then obtain � ¼ 4, close to the
value we find given the statistics.
The connection between SLE and statistical properties

of turbulence allows one to look at such flows with a new
eye and to build bridges between fluid dynamics and other
research areas in mathematics, condensed matter, percola-
tion, and quantum field theory. Other three-dimensional
flows may be studied with the same tools when the flow is
self-similar and symmetries allow for a reduction of di-
mensionality. As an example, we leave for future work an
investigation of SLE properties in the inverse cascade of
rotating turbulence.
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